The SCOL language
Tutorial

by Sylvain HUET
version 3.0

Foreword

For along time, we have looked upon the computers that sit proudly on our desks as powerful calculators,
machines for word processing or drawing, high-tech TVs, mailboxes, obedient workers... For a long
time, we have thus attempted — and indeed till are attempting — to familiarize ourselves with all the
functions this wonderful tool has to offer. Better than any pen or paintbrush, we can use it to write or
draw, correct, copy and print. More sophisticated than the television, it transmits images, sound and text.
More proficient than any letter or parcel, it can move mountains of information with the click of a button.
More diligent than the worker, it performs its tasks without complaining, doesn't make mistakes and has
nothing against monotony. The computer's automated role is nothing short of spectacular, unhoped-for
and hitherto unheard of; it does what we hardly dared imagine less than a century ago. It is the ultimate
conclusion to the industrial revolution.

There is aways a certain degree of satisfaction in seeing old dreams come true. However this satisfaction
soon gives way to frustration, since we are not content with merely realizing yesterday's dreams; we need
to imagine those of tomorrow. Thus, these machines are not just tools to be used, but worlds in their own
right. Video games have shown us that the computer can contain its own imaginary, animated and
extraordinary world. A world with its own rules and its own story, one in which the machine asks us to
take a seat. According to Philippe Quéau, Director of the Information and Computer Division at
UNESCO, humanity is entering its third image period: after the images we look at (paintings, drawings),
and the images we read (letters, books, the web), here are the images we live in and which, thanks to
network technology, we do so collectively. Just as the eye is the gateway to the images we see, and the
ear the gateway to the sounds we hear, so the computer is the gateway to thisimage we livein.

It is time we considered the computer as a prosthesis, one which allows us to enter a new reality and to
actually live in these new images.

Living in an image is like living in a house: you can enter inside it and welcome others in it, you can
share, work and rest in it, build it, move it, extend it, tidy it and make a mess of it. The only difference is
that the image we live in has no substance, or rather its substance is constantly changing: a wall is not
made of concrete, rather it is a fragment of the hard disk's magnetic surface, a series of transistors inside
the compuiter, various electrical states of a coaxial cable and a handful of electronsin the cathode ray tube
of your monitor. Real or virtual, that is not the question, because everything you do in thisimage, that is
to say everything you communicate in thisimage, is real enough. What you do to others and what you say
to othersis just as real as if you were using a piece of "concrete" equipment. When we talk of a house's
spirit, we call to mind the traces left by those who lived in it previously. The same applies to the image
welivein: it is marked by the life organized within it.

As with any other image, it cannot fall within the confines of a definition. Classifying it is no small order:
3D, 2D, text,... By "inhabiting" an image, we think of a three-dimensional place, probably the most
appropriate and familiar form that we can imagine. Nonetheless, me must not cast aside other forms that

2

may reveal themselves to be more adapted to certain uses. "Inhabiting" a place conjures up a building
and, consequently, a certain architecture. However, there is a fundamental difference between the
building and the image, between the architect and the painter: to build an edifice, you need sufficient
resources in terms of men and material, whereas the image needs only a nominal investment — a few
pencils and some paper. And yet, the image is more powerful than the building, since it understands,
absorbs and surpasses it. As Victor Hugo once said: "the book will kill the building!".

This image we live in has an author: as such, it is no different than the image we see, or the image we
read. Creating such an image requires a diverse set of skills: appreciation and organization, architectural —
but also aesthetical — acuity: who would want to live in an ugly image? Lastly, a good measure of
computer expertise to bring the image to life. The architect can only work if he or she is familiar with
building techniques, and on a more basic level, because such techniques and technologies actualy exist.
Similarly, the image we can live in is only thinkable through the techniques and the technology that make
it possible.

Scol isthe technology of the image that can be lived in.

To reach this goal, Scol technology must be unbiased in so far as the inhabitable image is concerned: just
as it isimpossible to find points in common between two paintings (outside of the fact that both are flat
representations, and perhaps not even that...), so it must be impossible to find points in common between
two inhabitable images.

This technology must therefore resolve al the purely technical problems to put the author in a situation
where only the interesting problems subsist. It must constrict the author's imagination as little as possible,
and lend itself to be adapted to constantly changing uses. In short, it must evolve, not in paralel to the
creations it offers, but through the very existence of these creations.

Only one computer element can offer this degree of flexibility: the programming language. That is why
Scol technology is above al based on a language, that of Scol. Like the language we speak, a
programming language offers the guarantee — with a mere handful of words — that its possibilities are
already infinite. It also offers the guarantee that each can define their own style, their own expressions. It
thus guarantees the author's independence and freedom.

Scol is alanguage adapted to the author's goal.
It is compact, since it must travel through a network, and since load times need to be reduced.

It is functional, statically characteristic and polymorphic, since it is a modern language which, through its
very syntax, prevents most of the bugs you will find in other languages from being written.

It is network-oriented, containing communication-related functions at the very heart of its syntax: the
developer no longer has to worry about how to convey information (format, bottlenecks, ...), just its
content.

It is a 3D language, since the 3D environment is the natural context for exchanges and encounters. For
this reason, the Scol language includes an engine optimized for on-line use, i.e. one offering fluid image
rendering on less powerful machines by using scene description files that are compact.

It is a 2D language, since it is the privileged medium for text and image. The Scol language offers a
complete library to build and manage any interface using windows, buttons, text, images...

It is sound language, since the oral is the preferred means for communication: the Scol language offers all
the possibilities of playing music, recording, compressing and restoring sound.

It isan SQL language, since databases are the preferred means for organizing masses of information. The
Scol language can connect to any database and perform any SQL query.

It is a Web language, since it is a natural Internet interface. That is why Scol technology interfaces with
JAVA, JavaScript and ActiveX.

With Scol, you enter into the new age of the image.

Table of Contents

0= Y] (o TR TP UPUROROSRRI 2
LI o L= o O] g1 1= o £ TSSO P PR RORPPT 5
LI =501 (T PR RRR 9
1. Presentation of the SCol Virtual MBCHINE............coi it ne e 9
2. Link between the Scol virtual machine and the files 0N your COMPULESc.covvireinineieneneereeeeseseeies 9

3. Implementing the ENVIFONMENToiiiiie e ettt b et b et b e n e 10
L INSLAHTTNG SCO ...ttt bbb e st b e bt b e et b e bttt b b ens 10

3.2, SPECIAl CONFIGUIALTON. ... ettt bbbt s e b et b et b et b e ens 10

GG T I T < o T PSS 11

LTI 1= Vo Yo g Lo TP OSSR PR USSP 12
1 £ A= 6 Lo o OSSP P PR URURPRPRRN 12

S 0] 010 IV = o o I PSPPSRSO 14

N 11 (0 Y= =T o PSP TPV UR USSP 15
I, Principles of SCOl ProgramMing..........c.cceieeceeoeiieeseeseeseeeeseesaesseesreessessseseesseasseesseensesssessessseesseessesssesssesnes 18
1. ENVironments @nd ChaNNELS.ottt sttt e e st esaesaeenesneeneeneeneens 18
L1 ENVITONIMIENES ...ttt sttt et e ettt sae e st e st e e e eeseeebeeaeeseeaeeneeneeseeaeeabeeaeeseemeeneensenseseeseesseeneeneeneeneas 18

B2 @ =g T SRS 18

1.3 Starting the Scol machine: initial ElEMENLS ... 19

2. FUNCLIONG PIrOGIBMIMING ...cveveeeterteeeteste ettt et see et ee st b s bt ebe b e e eb e s b et e besb et e b e s b et eb e et et ebeeb et ebenbe e ebenneneeee 19
G IV 1S =10 I Y/ o1 o SO 21

G 00 I g 11 oo (U Tox o I (0 1 o == S SSS 21

3.2 SYNLAX OF SCOI LYPIES.....ueeiveeieeieeieeestee st e st et e et e st e st e e te et e es e saeesseesaeesteeseeneesseesseasseenseenteensesneenseensens 21

3.3 FUrther iNfOrmMation ON LY PES.....ccui ettt et e e ste e eesreesaeesseeteenteeneesneesseenreas 23

4, Syntax Of the SCOI [ANQUBGE.........ccie ettt s e st te e e e steeaeessaesseesreenaeenesnnennes 24
5. BaSIC CONSITUCTIONS........ceueeeitesie sttt ettt b ettt e bbbt b et e s e se e b e s bt eheeb e e ae e s e e se e b e nbeebeebeeneeneenennas 29
DL MAIN Bl EIMENES ...ttt ettt ettt e s et et e e eeeEeeae e Rt e ne et e teeeeereeaeeneene e e eneees 29

B2 USING TUDIES. ...ttt b b et b e b st h e e s e bt s e e e bttt b et b e e bt e e ens 32

5.3 APPHCAITON 1O 1ISES .ttt b bbbt e bt e s 33
BAUSING TADIES. ...t bbb e e bt e bt et b et b b n e 36

5.5 Further details on certain basiC CONSIIUCLIONScoviiiirere et 36

5.6 USING SLIUCKUMES.cueiteeeiieteseet ettt b et b et b e e he bt st e bt e e bt s e st eb e et e bt e bt et e e e bt e e e 37

5.7 USING tYPE CONSITUCTONS.....eeutieuieeiteettesteesteesteesteesteseesseesseesseesseessesseesseesseesseassessssssessssssseensesnsessssssesssenssens 37

5.8 USING thE TUNCLIONS ...ttt ettt st st e nte e eesne e saeesseeteenteeneenneesreensens 39

5.9 REAEfINING FUNCLIONSoeiiiee ettt sttt e e ee s e e saeesseebeenteenaesnaenreenrean 40
5.10 NEW EXAIMPIES ... ceceiieeecieesie ettt sttt s e ste e ste e e st e ste e teeateeseesaeesseesseesseenseeneesseesaeaaseenseenseensesneesseensens 41
LI RS 7o = o o =Y/ 43

6. Global variables of the SCOl MACHINE............ooiii e 51
V. Channels and COMMIUNICALIONS.coueiuiiieieriee sttt ettt s e se e e seesaesbesaeese e e eneeseestesaesneeneeneeneees 53
1. Manipulating ChaNNELScueiiiei bbbt bbb bbbt b et e 53
1.1 Channel ManipUIALioN AP ..o et b bbb se et b e e b b seene 53

1.2 Environment management AP ... i ene 54

1.3 Creating and destroying aChannEl ..o 54
1.4 Creating and deStrOYiNg @ SEIVEYcccceecieeieeieseeseeseesteeseeseeseesseesseesseassesssesseesseessesssesnsssseesseesseessenns 56
1.5 Additional functions of channel ManNagEMENLooiveri e ens 57
IS] o1V 1= PSP 58

2. COMMUNICELIONS 1N SCOeetitiiteiteeie ettt b bbbt se et e bt bt eb et e e e se e besbesbeebeeneeneeeennas 59
2.1 Controlling conNections: PartiCUlar VENES.........cccccviiiereere et se e sae e et reeae e snaesreeneees 59
2.2 Sending amessage using the 0N fUNCLION..........ccci i 59
2.3 CoNtrolliNg MESSAGE UEUES.........ueeeeieeeiteeiteesteeseeseesseesseesteesteestesseessaesseesseenseansesseesseesseeseenseessesseessenssens 61
2.4 SeNAiNG A UDP MESSAQEcvieveeieeeieiteesteesteesteestestesteesteesteesteestesseessaesseesseanseansesseesseasseeseenseensesseessenssens 61
2.5 Another use for CommMUNICatioN CONSITUCTONS.......co.eeuriieeierie ettt sttt sre b e e s 62

3. Methodology of network programming iN SCOlcccvevieiieri e srees 63
RV L= =T 1= .01 | 65
S ol I o= 1 0SSP 65
2 B B Y PES ettt h bbb E b E R R R R e R R e bR e bRt R e bt bRt b e r e 66
200 N[= S 66
2.2 SIGNEU TS, b b b e a bR R Rt b et b et a e ens 67
3. F1EmMaNagEMENT AP ... bbb bbb 68
4. Advanced file-reading FUNCLIONSooiiiiieiie et eb b ene s 70
5. File SEIECHON TNEEITACEot sttt st a et et e st et et seeeeeeneeneeneeneas 70
V1. Event-driven and graphic interface programimingcccceeieereerieenesieeseeseeseesteeeessesseesseeseesseessesnsssnessnes 71
O = Lo o T ot o] =SSP 71
L1 Proprietary ChANNELooooeee ettt e st et e et e e s e sseesseesseesseeneesneesneesneaseensenns 71
1.2 MENEGING BVENESeeieeeitiesie et cee st e st este e e e e et tesseesteesteeteaneesaeeaseesseenseesseassesseesseesseesseansesnsesneesseanseensenns 72

A - 1] - SO SSS 74
220 VY 0 (o S 74
N T 0 11 S 75
V1. 3D PrOGIBMMING. .. .cveteuertereeueetertesessesseseesesseseesessesessessessesessensesesbeaseseabeaseseeb e s eseeb e s eaeebe b esenbe b eneeb et eneebennenees 76
1. BASIC 3D CONMCEPES.euecueteeeuertereeuietesseseet sttt ss st b b e e ebesb e s eh e s b e e e bt e b e s eh e e b e s e ae e b e b e st eb e b e st eb et e neebe e et ees 76
TR o= o= TP 76
2SS T o o RS 77
LB IMIBLENTEL ...ttt bbbt b e bt eh et e R R Rt Rt R e Re Rt e R e b e bRt e e neenn e nnas 77
LA PEITOIMANCE ...ttt e e bbbt bt et e e e s e e e bt e bt eh e e b e e ae e st e e et e nbeeheebeeneene e e ennas 78
1.5 Scol 3D enging CharaCteriSHiCSueieertieiice ettt ee e e et ae s e st e s reesteeaeeneesneesneanseenseens 78

2. 3D THETOIMEAL ... ettt h et e bbbt bt e e s e e b e bt eh e e b e e ae e s e e ne e b e b bt ebeeneene e e ennas 80
GG D I 1= 10 11 o LU = o 1 AN ST 83
I N[1Y o= PSSR PPPR 86
TS o S 86
3.3. General 0DJECT MBNAGEIMIENLeieiiitereeiet ettt b s b et b e bbbt ne e 87
3.4, MANBGING MELETAIS......eeeeiitieetietere ettt bt b et b e s eb e s b e e et b st e e bt st ne b e e e 90
3.5, MANEGING TEXTUIES.c.veeeeiitieeteet ettt b et b e st b st b e e s bt b e e bt s e et bt ne e bt b e bt e e ens 91
3.6. Managing rendering and link With 2D iNtErfaCe..........cooeiiiiirrec s 92

Y =TT o oo TS T o] 93
1 T o= 93

V1. BigNUM PrOGrAIMITIINGeiveueitirieierteneeiesiesseesse s eese s sse st st essesesse s e st sbe s ese s b e s eseabe s esesbe b eneebenbeneebennenens 97
1. GENEIal INEIOTUCTION. ...ttt bbbt e e e e b b e e bt e aeeb e e e et e sbesbenbesbesre e e eneeneens 97

N L TSPV USUSPI 97

G T = 0o =SS 99

D G O TSP R USROS PP 101
1. GENENal INITOTUCTION.c.eititeieeeteee ettt ettt b e bt bttt s e et e s bt s b e e bt e st e ae e e e b e sbesbenbeeneen e e e e e es 101

N o LTSRS TP VRURPRRRRPIN 101

B EXBIMPIES. ...ttt bR h R R R h bR b bRt b b ne bbb n et 102
DO o 11 oL 1 =0 = ol oo TSP P ST PP OTUR PSPPSR 105
L D SEIVET ..o e e 105

Bl PHINCIPIES. ...ttt bbbt bt b e bt b e s b e bt b e e e e bt b e st e bt hene bt b et benr e ere s 105

D. SOME WOIAS Of GOVICE ..o sttt ae et e e seeseesaesneeseeneenseneens 106

2 o Lo o 1T 0| SO ST P ST SRTRPRSR 107

= T 10T = S 107

D, POST MELNOA. ...ttt e e bt bt ae bt et e e e se e b e sbesaesb e e e ennennans 108

D IV 11T o (= o =T o o 1oV 109
XII. The Scol machine: start-up, control, standard client and SENVEXcccecv e ceeceere e 111
1. SCOI ENQINE: thE SUPEIVISONccuveeieeieeieceee st et et eteestesaaesee s e e s teeteanaesseesseesseeseenseessesseesseesseesseensesnsesnensnes 111

2. StArtiNG the SUPEIVISOccvieieeieeeieseesee st e steete st e saeeste e e esteeaeesteesseesseeseaseesseesseeseanseensesseessensseesseensesnensnns 112

3. Starting a Scol machine With @ Start-UP SCIPL.......ovieieirie e 112
I S =T B o o TP PSR PTPYSTURTPTSRPRPTRTON 112

3.2 OPEIALNG FTONES. ...ttt ettt sttt b et b e b e b b st bt s b e se bt s b e se e b e e b e st ebesbeneebeebeneebenneneeneas 113

G 1V = 0 1 o] TSP PR P USROS 114

4. Starting a machine or another process with & SCol MAChINE ..o 114

5. Communication between the Scol machine and the SUPEIVISOrcccvocv e 115

6. Standard SErVEr @N ClIENToo.i i b e e b b sae b e e e e ne e 115
6.1 General remarks on Scol maching COMMUNICELIONc.ooiiirerieieee et 115

6.2 StaNdard SEIVEr — VEISION 3 ...ttt sttt sttt e bbbt e b et e e e b e b sb e bt e ne e e e e ennes 116
XU, INtegration POSSIDIHITIESveieeeecee e et e e e s ae e te et e eseessaesseesreesneeneeeneennns 118
= TS T 41T L 11 =T o RS 118

d. Sophisticated INTEITACINGoeiireiite bbb et b e ene s 122
XIV. DMS Programming: Distributed MoOdUIES SYSIEM........cciiiiiiieirereeesereee e 126
O =S = (o S 126
2. DEFINITIONS. ...ttt ettt sttt et e st e e ee s bt s aeeaees e e e eneeseeebeseeeaeeseeneaneeseeebeseesneeseeneeneeneens 127
B PHINCIPIES. ..ttt bbb bbb R bR R R R bR Rt bR ae bRt bbb et e 128
B.AMOUUIE BFCIITECIUIE........eieiieee ettt ettt e st et e tesaesae e ene e st eteseeseesaeeneeneeneeneas 128

3.0 TTrEE OF AOCUMENTS..... .o b e e b et e e b s bbbt et ene e e ennas 129

Gl o= 0 | = 1o o PSP 129

3.d Inter-module links and COMMUNICELION.cierieierieiesie st s 129

N D)= 0 4 T odK= ok V7= 1 o o PR 131

3F USErS AN0 USEITNSLANCESc.veveiieetieeeiee ettt b et se et b et e b et e e e b e sbe b e bt e neene e e ennas 132

3.0 TNE SCS ST EUITO. ...ttt ettt b e b b e bt b e e e bt s b e bt e b e seebenbeneeneas 132

4. DOWNIOBAING OF FESOUITES.eeteteeeterteeetestese et sttt sttt st et et b ettt s b et bt sb et b e s b et ebesb et ebesb et e besbe e sbe b eneees 132

5.1 DMC file: distributed MOTUIES CIESS..........eeeeuiiiiieeceiie ettt et eetee e eteeeeaee st eeeaee s sbeeesneeesbeeenseeenns 134

5.2 [0 0 1S 1 =SSR 136

5.3 “dmi’ definition block: distributed Module INSLANCE...........ceeeveiiiie i 137

54 1INk’ dEfINITION DIOCK.......viiiiii ettt s be e sbe e s ebeesbe e e ebeeenree s 138

55 ‘ZONE AEFINITION DIOCK ...ttt s eb e e e e be e e be e e beeearee s 139

5.6 o (< R0 U=t T o TR Ko T ol Lo o SO 139

5.7 ‘docclient’ and ‘docserver’ definition DIOCKS..........ocuiiiiiiiiecee e 140

L OSSR 140
(ST IS V= g AN RSSO 140

LI Ot 1= o 2 = SRS 151

LSRRI o [(o N = RSSO 157

7. Example 1 : module running only 0N the SEIVET ..o e 158

8. Example 2: distributed module and Zone MaNAgEMENLcoerirerieririreiee e e 163

9. Example 3: distributed module and intra-module MESSAGE..........coieeiiereie e s 166
10. C3d3 MOAUIE N PIUGFINS. ...ttt st s e s et e e te et e entesseesraesreesteenseeneesneennes 169

A AN 11 (o =TSSR STRPRRRRR 176
G T o T T 177
= 11 1) = R 180

|. Presentation

This chapter will help you take your very first steps in Scol. It includes a presentation of the Scol
programming environment.

1. Presentation of the Scol virtual machine

The Scol virtual machine is the program based on Scol technology. Its Windows version is called
UsmWin.exe (which stands for ‘Universal Scol Machine for Windows'). You generadly find it in
‘C:/Program Files/Scol/’.

As its name indicates, the virtual machine creates a virtual version of an 'ideal' machine whose
characteristics would be the following:

- Automatic memory management: developers do not have to reserve or free up the memory themselves.

- Thisvirtual machine's 'machine language' is the Scol language.

- Fully integrated network communication management, since this management is masked by the Scol
language.

- A number of libraries, used to connect the machine to a simple graphic user interface, to sound
interfaces and many others which we will look at later in this document.

As with any other machine, the Scol virtual machine feeds on programs, written in ‘machine language', in
this case the Scol language. This means that the virtual machine aso includes a Scol language compiler.
The virtual machine is said to be ‘universal’ since it is the cornerstone of any system based on Scol
technology: such a system consists of a variable number of Scol machines which communicate with one
another.

Developing in Scol amounts to writing programs in the Scol language and in giving them to one or more
Scol machines for execution. It is important to note that more than one virtual Scol machine can run on
the same computer. Indeed, this will aways be the case, since a specia Scol machine, called ‘ Scol
Engine’, will aways be running as a background task on your system.

For those interested in the technical details, note that the Scol language is compiled ‘on-the-fly’ towards a
byte-code which isinterpreted.

2. Link between the Scol virtual machine and the files on your computer

As with any other machine, the Scol machine needs mass memory to store the programs and data of the
applications written in Scol. The machine can therefore read and write files.

9

Specialists usually consider this to be a serious security problem: since Scol applications are often
connected to the Internet, the user does not want the content of his or her files to be transmitted
somewhere else in the world. For this reason, Scol's file management system has been specially designed
to isolate those applications that do not use Scol from those that do use it on the one hand, and to isolate
the Scol applications from one another on the other hand.

This system, which we will look at in further detail later on, is based on the concept of ‘ Scol partition’. A
Scol partition is adirectory (including all associated subdirectories) on your disk that can be used by Scol:
a Scol machine cannot access a file not present in a Scol partition from itself. A Scol machine can use a
number of Scol partitions, used in the order in which they are defined. A file which is not found in the
first partition will be searched for in the second partition, and so on. Writing is aways done in the first
partition.

By default, the partitions on your Scol machine running Windows are defined as follows:

c:/program files/scol/cache

c:/program files/scol/partition

When you develop your first programs, only the second will be used. The principle is as follows: the
second partition is your working directory, while the first contains all the files you have gleaned while
surfing from one site to another; consequently your files are protected from your wanderings.

The partitions are defined in the usm.ini file (whose path is usualy c:/program files/scol/usm.ini). This
file's syntax will be defined later in this document.

3. Implementing the environment

To become a 'real' Scol developer, you must first install the development environment on your computer.
To do so, proceed via the following stages.

3.1. Installing Scol

Before doing anything else, you must install Scol on your machine. To do so, download the latest version
of the virtual machine from the Cryo-Networks Web site: www.cryo-networks.com. This program is free.
It isapproximately 1IMB.

3.2. Special configuration

The SCOL machine can produce files that track its operation. These files are known as ‘log’ files. The
creation of such files tends to slow down the machine. That is why they are not produced by default.
However, these files contain information that is particularly useful for developers. In particular, they

10

indicate syntax errors and, more generally, compilation errors. Moreover, certain Scol language functions
can be used to write directly in log files during execution. This often helps in the efficient debugging of
your programs.

Y ou must start by reactivating the log file creation function. Proceed as follows:

- Start Scol

- Open the “ Settings” menu

- Open the “Expert Mode” menu

- Replacetheline ‘echo 0" with ‘#echo 0’ (the # character is used to add comments to the line)
- Replacetheline‘log no’ with ‘log yes

- Click OK

Y ou can also do this by editing the usm.ini file (usually located in Windows in C:\program Files\Scol).

Y our system is now configured and you are ready to develop your first program.
When you want to deactivate the log file creation function, simply restore these two lines to their origina
status.

3.3. Developing

To develop in Scol, an editor is required for typing your programs.

A word of advice: use your favorite editor. Moreover, if this editor offers an automatic indent system for
C language, activate it. The syntax of the Scol language was designed to make the most of this widely
used function.

If you don't have afavorite text editor, you can simply use the Windows notepad.

11

Il. Hello World

We will start with a well-known program. It consists in displaying the message ‘hello world’ on-screen.
We will give several versions of this program.

The aim of this chapter is to present several examples of programs written in Scol. If some points seem
obscure or insufficiently detailed, be patient. All will be revealed in the following chapter.

1. First version

To start with, create a“ Tutoria’ directory in your ‘ Scol/partition’ directory.
Then type thefile ‘ Tutorial/hellol.scol’:

_load “Tutorial/hellol. pkg”
mai n

Now type thefile ‘ Tutorial/hellol.pkg’:

[* comentary */

fun main()=

_showconsol €;

_fo0S “>>>>>>>>>>>> Hello World”;;

Now double-click on the Tutorial/hellol.scol file to run the program.
A white, fine-lined window is displayed with a number of inscriptions that are not yet understandable.
Thelast lines are:

exec : _load "Tutorial/hellol. pkg"

|l oading C:\Program Fil es\ SCOL\ partition\Tutorial/hellol.pkg ..
t ypechecki ng

fun main : fun [] S

byt ecode produci ng

| oadi ng conpl ete

exec : main

>S>>>>>>>>>>> Hello Worl d

WRI TE 9

exec : _connected

12

_connected : conmmand not found
VRI TE_OK
>>end Ti meCut

You see ‘>>>>>>>>>>>> Hello World' appear. This window is the ‘console’ window and is closely
linked to the log file since messages that pass in the console are written in the log files. Thus, once you
have closed this console window, open the corresponding log file: it isa*“ *.log” file located by default
in directory “c:/program files/scol/log”, and contains the date (year-month-day_hour-minute-second). At
the end of thisfile, you will find the replica of what is reproduced here. Well done! Y ou have now created
your first Scol program. Now let's try to see what happened.

Generaly speaking, the *.scol files are start-up files called script files, whereas the *.pkg files contain
programs written in the Scol language. Later on, we will see that there is a close tie between these two
types of files. We will detail the syntax of the script files at alater stage.

The hellol.scal file contains the program start-up commands. The first line (*_load ...") indicates that you
must load the hellol.pkg program. The second line indicates that you must then run the ‘main’ function.

The hellol.pkg file contains the program as such. In a Scol program, you will find several types of
definitions:

- functions, the definition of which starts with ‘fun’

- variables, the definition of which starts with ‘var’ or ‘typeof’

- new types, the definition of which starts with ‘typedef’ or *struct’
- and still more things...

Each definition ends with a double semicolon *;;’. Thisis a reference to the Caml language developed by
the French National Institute for Research in Computer Science and Control (INRIA).

Comments are placed as in C between /* and */. Unlike C, you can interleave the comments, which often
proves to be most practical.

In the hellol.pkg file, you thus define a*main’ function. This function's name is followed by (): it does

not take any arguments. The function's value follows the = sign. Each expression of the function is
separated from the next by a semicolon (*;’). Here, the function thus includes two expressions :
_showconsol e and fo0S “>>>>>>>>>>>> Hello Wrl d”

The definition of the function ends with a double semicolon.

The first expression cals the _showconsole function which displays the console window (which
otherwise remains hidden).

The second expression calls the _fooS function which requires a character string-type argument, and
displaysit in the console window and, therefore, in the log file.

In Scol language, arguments are not placed between parentheses nor separated by commas as in C
language. The arguments follow the function, separated quite simply by spaces or new line characters. If

13

you want to use parentheses, you can place them around one argument, or around the
function+arguments. For example, the following three expressions are all correct:

_fooS (">>>>>>>>>>>> Hello Wrld")
(_fo0oS “>>>>>>>>>>>> Hello Wrld")
(_fooS (“>>>>>>>>>>>> Hello Wrld"))

We will come back to this important point later on. Note that if you don't like parentheses, you can use
braces: they serve exactly the same purpose.

Once the console window is displayed, the virtual machine is always in operation. It only stops when you
destroy the console window. Indeed, this is one of the ways of destroying a Scol machine.

Towards the end of the log file (4 lines before “ hello world"), you will notice the following line:

fun main : fun [] S

This line is very important: it indicates that the virtual machine has successfully recorded (compiled) the
main function, and gives its type: a function which takes no argument and which returns a character
string. Indeed, with Scol, you will very seldom have to define a function's type (number and type of
arguments, type of the result) yourself. The Scol machine doesit for you (wetalk of “inference of type”).

2. Second version

file ‘' Tutoria/hello2.scol’
_load “Tutorial/hello2. pkg”
mai n “Test”

file‘Tutorial/hello2.pkg’
/* Hello2. pkg */

fun end(a, b, r)=
_cl osenachi ne; ;

fun main(title)=

_DLGfl message

(_DLGWessageBox _channel nil title "Hello World" 0)
@nd O;;

Thistime, asimple dialog box is displayed instead of the console window.

This program underscores a number of points.

Firstly, the main function uses an argument called ‘title’. Here we can see how to pass this argument from
the hello2.scol file. It takes the value “Test”.

14

The ‘main’ function in the hello2.pkg file uses only one expression, but this expression calls a
_DL Grflmessage function (which requires 3 arguments) whose first argument is itself the invocation of a
_DLGMessageBox function (which requires 5 arguments). Without going into too much detail, let's say
that the _DL GMessageBox function creates a dialog box whose title is the 3rd argument and whose text is
the 4th. This function returns the identifier of the dialog box. The _DLGrflmessage function is used to
define what will happen when the user closes the dialog box. The first argument is the dialog box, the
second is the function to call. The ‘@ sign is used, as it were, to send a pointer to the ‘end’ function (to
use the C language terminology). Without this sign, the ‘end’ function would be called immediately
(which would provoke a compilation error since the ‘end’ function requires three arguments, whereas
here only oneis available).

The ‘end’ function contains a single expression that calls the *_closemachine’ function, which closes the
Scol machine.

A quick look in the log file (Scol/hello2.scm.log) reveals the following line:
fun main : fun [S] MessageBox

This time, the compiler has detected that the main function uses an S type argument (character string) and

returns the MessageBox type. Note that the developer has not had to specify the argument type (S), but
that the compiler has determined it itself.

3. Third version

file*Tutorial/hello3.scol’:
_load "Tutorial/hello3. pkg"
mai n
file‘Tutorial/hello3.pkg’:
/* Hell 03. pkg */
fun _end(a, b)=_cl osemachi ne; ;
fun _resize(a,t,x,y)=_SIZEtext t x-2 y-2 1 1;;
fun main()=
Il et CRwi ndow _channel nil 150 150 400 300
VW_MENU| WN_M NBOX| WN_SI ZEBOX "Hel | o Wor | d"
->WwWnin
let CRtext _channel win 1 1 398 298
15

ET_VSCROLL| ET_HSCROLL "Hell o Worl d"
-> text in
(_CBw nDestroy win @end nil;
_CBwinSize win @resize text

)i

This program defines three functions: _end, _resize and main.
Here we see a number of new elements appear: _SlIZFEtext, let, nil, _CRwindow, _CRtext,
_CBwinDestroy and _CBwinSize.

Functions _SIZEtext, CRwindow, _CRtext, CBwinDestroy and _CBwinSize are graphic interface
functions:

_CRwindow is used to create awindow:

- argument 1 is the window's proprietary channel (thiswill be explained later)

- argument 2 is the parent window of the window to create

- arguments 3 and 4 give the position of the window

- arguments 5 and 6 give the size of the window

- argument 7 contains the window's flags (here, you define a smple window that can be minimized and
whose size can be changed using the mouse)

- argument 8 contains the window's title

_CRtext is used to create atext field:

- argument 1 isthe text field's proprietary channel (thiswill be explained later)

- argument 2 is the parent window of the text field to create

- arguments 3 and 4 give the position of the text field

- arguments 5 and 6 give the size of the text field

- argument 7 contains the text field's flags (here, you define a text field with horizontal and vertica scroll
bars)

- argument 8 contains the text placed initialy in the text field

_CBwinDestroy defines the function to call when the window is destroyed:
- argument 1 is the window in question

- argument 2 is the function to call when the window is destroyed

- argument 3isauser parameter

_CBwinSize defines the function to call when the window is resized:
- argument 1 is the window in question

- argument 2 is the function to call when the window is resized

- argument 3 is a user parameter

_SIZEtext resizes atext field:
- argument 1 isthe text field to resize

16

- arguments 2 and 3 give the field's new dimensions
- arguments 4 and 5 give the field's new coordinates

Note the ‘nil” function. In fact, nil isaspecia value which has no defined type. Any variable or parameter
can take the value nil. Here, nil is used in two places:

- as the parent window of the window created by _ CRwindow: this means that the window has no parent

- as the user parameter of the _CBwinDestroy function: this can mean that there is no user parameter to
pass

The'let ... ->...in ...’ function is used to define local variables.

Between ‘let’ and ‘->*, you can write any given expression. As with all expressions in Scol, it returns a
result (here, it isawindow in the first instance, atext field in the second).

Between ‘->'and ‘in’, you write the local variable (here, ‘win’ and ‘text’).

After the ‘in’, you write the expression in which the local variable can be used. Beyond the expression
that followsthe ‘in’, the local variable is no longer recognized.

A quick word on calback functions: the functions passed as arguments of the _CBwinDestroy and
_CBwinSize functions are callback functions, since they will subsequently be called when a given event
occurs. By convention, callback functions use at least two arguments:

- the first argument gives the assigned object again (the window in the case of _CBwinDestroy, and
_CBwinSize)

- the second argument is the user parameter as defined by the _ CBwinDestroy or _CBwinSize function.
Possible additional arguments depend on the nature of the event. For example, the destruction callback
does not use any additional parameters, while the resizing callback uses two additional parameters which
contain the new size of the window.

We are now in a position to understand this third program.

The *‘main’ function creates a window and a text field contained in this window. The title of the window
and the content of the text field are positioned on the ‘Hello World’ value. The ‘main’ function also
defines two callbacks on the destruction and the resizing of the window.
If the window is destroyed, the program stops (_closemachine function).
If the window is resized, you must resize the text field. This is done by calling the _SIZEtext function.
Note the use of the user parameter to ‘pass’ the text field to the callback.

We will use thislittle program in the next chapter, since it can be used to define a simple display area.

17

lll. Principles of Scol programming
1. Environments and channels

1.1 Environments

An environment isalist (in the computer sense of the word) of variables and functions. In the previous
chapter's ‘hello3’ example, in the Scol machine there was an environment containing the main, _resize
and _end functions and all the variables defined in the locked/lib/const file. Moreover, this environment
contained all the Scol API functions (_ CRwindow, _Crtext, ...).

Files written in Scol are adways compiled in a certain environment. The program thus compiled can refer
to the environment's functions and variabl es; those defined in this file are added to the environment at the
start of thelist of variables and functions: by compiling the ‘hello3.pkg’ file, we added the main, _resize
and _end functions at the start of the environment. This means that any file compiled afterwar ds will be
able to refer to these three functions.

By definition, aminimal environment is one that only contains the Scol API.

The originality of the Scol machineisthat it can manage severa environments at the same time: several
lists of variables and functions coexist in the machine's memory. That iswhy it isimportant to know — at
any time — in which environment you are working. These environments are not necessarily independent.
Aswe said, an environment isalist. You can have two lists with the same end part. For example, lists
(1,2,10,11,12) and (3,4,5,10,11,12) have the same size 3 end: (10,11,12). Similarly, in Scol, two
environments can have the same end. In fact, each environment ends with the minimal environment.
This means you can share certain resources between the environments: functions and variables can be
pooled. A variable that islocal to an environment is one that is defined in a non-shared part of the
environment'slist.

>>> ADD SCHEMA

1.2 Channels

A channel isapair (environment, network connection). This association is an original feature of Scol. At
its minimum, the environment is the minimal environment. The network connection isusualy a TCP/IP
socket-type connection. However, you define a special type of channel, called unplugged, which does not
contain any network connections.

18

Thus when you create a channel, you must specify itsinitial environment as well as the possible network
connection. A channel's environment can develop over time:

- Y ou can enlarge an environment by compiling new Scol files.

- Y ou can delete elements from an environment by removing the functions and variables |ocated at the
start of an environment.

- Y ou can substitute one environment for another, and in particular reinitialize a channel by replacing its
minimal environment.

1.3 Starting the Scol machine: initial elements

When you start the Scol machine, an unplugged channel is automatically created with the minimal
environment. The *.scol file is used to define the operations to perform on this channel. These typically
consist in compiling one or more Scol files, then in starting the execution of a function. The files will be
compiled in thisfirst channel, and the function searched in its environment.

2. Functional programming

The Scol language is a functional language, even if it authorizes imperative programming and al side
effects.

The base unit of the Scol language is the function: a function is a computer object which uses a certain
number of arguments (possibly reduced to zero) and which produces a single resullt.

Any function returns a result, even when this result is not "significant." For example, in the hellol
example, the _showconsol e function returns a result (an integer). However, this result is not
“important”; what the developer isinterested in is the fact that the _showconsol e function initiates the
display of the console window. Any effect of a function other than the result of the function is caled a
side effect. A side effect must not make you lose sight of the fact that the function which produced it
itself returned a result.

With its functiona approach, Scol encourages function interleaving. We have aready seen one example
of interleaving in the hello2 program. Here is a second example. Others will follow.

fun f(x)= x+1;;
fun g(x)= x*2;;
fun gof(x)=g f x;;

Here, function f calculates what follows (x+1), function g calculates the double (x* 2), function gof
calculates the compound of g and f ((x+1)*2).
If we want to use parentheses for better readability, we could write:

fun gof (x)=g (f x);;
19

fun gof (x)= (g f x);;
fun gof (x)= (g (f (x)));;
However we could not write:
fun gof (x)= (g f) x;;

Other example:

fun f(a,b)=strcat a b;;

fun g(a)=strcat a “.";;

fun h(a,b)=f g a b;;

The st rcat function is one which concatenates two character strings. For example (strcat “a”
“b”)equals” ab” .

In this example, the h function takes two character strings and returns a string consisting of two
arguments separated by a point.

We could write :

fun h(a,b)=f (g a) b;;

fun h(a,b)= (f (g a) b);;

But we could not write:

fun h(a,b)= f((g a) b);;

And especialy not:

fun h(a, b)= f(g(a),b);;

Thus, the parentheses enclose the expressions, and not — as is the case with C — the list of a function's

arguments. Since each argument is itself an expression, you can enclose an argument in parentheses. Y ou
can replace the parentheses with braces: they are completely equivalent.

20

3. Types and typing

3.1 Introduction to types

As was indicated in the “Hello World” examples, the Scol machine automatically determines the types of
the functions during the compilation. However, in some cases, developers will have to create certain types
themselves: definition of structures, of type constructors, of certain variables and sometimes of function
prototypes. Moreover, to be able to read the documents on the Scol APIs, you need to be able to
understand the types.

The type of an element in your program can be diverse: integer, character string, table, tuple, function...
In Scol, types are simply there to help the developer: the types are only used when compiling to detect
most of the errors at that stage. Thereafter, when you run your program, they are no longer used since the
program has aready been proved to be correctly typed.

Typing is the operation whereby the types in your program are verified. This operation is performed at
the same time as the compilation (it is said to be static). For example, it detects that you are using a
character string with a function which requires an integer, but it can be much more subtle than that. When
a type error is detected, the Scol machine stops and displays an error message on the console window
(and thusin the log file) explaining the nature and position of the type error.

In Scol, typing is done by inference of type: this means that the compiler calculates the type of your
functions itself; you will not usually have to specify it. Scol typing is also said to be polymorphic.
Certain functions do not impose any type conditions on certain arguments, or certain parts of certain
arguments.

For exampl e the following function:

fun f(x)=1;;

This function does not constrain the type of x, since this argument is not used. Function f is said to be
polymorphic since it accepts arguments of different types.

This example is extremely basic, however there are more interesting ones: a function which calculates the
size of alist will not usually be concerned with the type of the elementsin the list. Rather than write one

function for the list of integers, another for the list of character strings and so on, polymorphism alows
you to only write one function.

3.2 Syntax of Scol types

The Scol language defines a syntax to write the types. This syntax is defined by the table below:
21

Type = B [un | rn
| tabType I [Type*] | fun[Type*] Type
TypeMono = B [rn
| tabTypeMono | [TypeMono*] [fun [TypeMono*] TypeMono
B = Basic type
un = dependent variable
rn = level nrecursion
The basic types are:
I : int
S : string
F : float
Chn : SCOL channel
Srv : SCOL server
Env : environment
Comm : communication

This list is not exhaustive: through type structures and constructors, you can develop your own basic
types yourself.

Here are some comments on the table in case you are not familiar with this notation.

The first line defines the Type expression, which is actually the Scol type. You then find the different
ways of writing the expression, separated by ‘|': this can be:

- B, defined on the third line: itisabasic type, likel, S, F, ... Thus since | is abasic type, B can be written
I, and since Type can be written B, | isatype in Scol.

- un with integer n: u0, ul, u2, u3, ... are types. they correspond to the dependent variables (which we will
detail at alater stage).

- rnwith integer n: r0, rl, r2, r3, ... are types : they define the recursions in the types (which we will detail
a alater stage).

- tab Type: table type. The word tab is followed by the type of the elements in the table. For example,
tab | isthetype of atable of integers.

- [Type*]: tuple type. Between square brackets, you write several Types (represented by the asterisk *).
For example, [I S] is a tuple of two elements, the first of which is an integer, and the second a
character string. The tuple may be empty: [] . Thetuple canitself containtuples: [1 [S 1]]

- fun [Type*] Type: function type. The word fun is followed by a tuple containing the arguments of the
function then the type of the result. For example‘fun [1] S isafunction which takestwo integers
as arguments, and returns a character string.

The expression TypeMono defines the monomorphic (non-polymorphic) types: the only difference with
Type is the absence of dependent variables un.

22

3.3 Further information on types

3.3.a Polymorphism

Let's take another look at the polymorphism example fun f(x)=0;; If you compile an example
containing this function, you will see in the log file that the type detected by the compiler is: f un [u0]
l.

u0 represents ‘Unknown O'. This means that the type could not be determined and that it is immaterial.
The 0 means you can differentiate the unknown types.

Other example: f un f (x) =x; ;
Thistime the compiler will determine the following type: f un [u0] uO.
This means that the type of argument x isirrelevant, but that the type of the result is the same.

Other example: fun f (X, y) =X; ;

This time the compiler will determine the following type: f un [u0 ul] uO.

This means that the type of the arguments isirrelevant, but that the type of the result isthat of the first
argument.

3.3.b Recursion

We have seen that tuples can beinterleaved [| [S 1]] . What happens with an infinite interleaving?
Let'slook at the concept of alist in Scol. The List type does not exist in Scol; by convention, you define
lists as a tuple of two elements, the first of which is the first element in the list, the second the next in the
list. Nil isthe end of thelist.

In Scol, you will write the list of integers from 1 to 5 as follows: 1:: 2::3::4::5::nil, or equally:
[1[2[3[4[5 nil]]]]].

Thetype of alist of integersshouldbe: [I[I[I[I ...]111]

Note[| r1] thetype of thiskind of list: tuple whose second element isalevel 1 recursion.

Other example: take an aternating ‘list’: [I[S[I[S ...]]1]]. This ‘list’ aternates integers and
character strings. Note [1 [S r2]] the type of this kind of list: tuple whose second element is a tuple
whose second element isalevel 2 recursion. Note: thisis not areal list, since areal list will normally only
contain elements of the same type.

Generaly speaking, the only recursive types you will have to deal with will be lists, thus[| r1] fora

list of integers, [S r1] foralist of character strings, etc. However, it is possible that you will create —
whether by mistake or otherwise — functions whose type contains different recursion elements.

23

For those who want to take this matter further, you can represent a type by an oriented graph. The nodes
are

- the basic types (these are therefore end-nodes)

- the polymorphic types (these are therefore end-nodes)

- the tables: there is therefore 1 child which represents the type of the elementsin the table

- the n-tuples: there are therefore n children each corresponding to one of the tupl€'s el ements

- the functions: there are therefore 2 children, the first corresponding to the argument tuple, the second to
the result

This graph actually looks like a tree. However, a branch can sometimes go from a node to a node which is

itself, its parent, its grandparent, or others besides. This is where the recursion comes into action: rl for a
branch going to itself, r2 for a branch going to its parent, etc.

3.3.c Some constraints

Theni | constant has no defined type, or rather it has al the types at the same time.

A type is only vaid if it does not contain any free variables. while “u0” and “fun [] u0Q” are
syntactically correct, they areinvalid.

Typically, if you write a function whose type returns a result containing a un (for example fun []
u0), this means that your function returns nil in al cases. Y ou must smply replace oneni | by O.

There is a restriction to polymorphism due to side effects. variables are necessarily monomorphic,
whereas functions can be polymorphic.

4. Syntax of the Scol language

Like any other programming language, Scol uses a very precise syntax. The table below defines this
syntax completely. If you are unfamiliar with this type of notation, refer to the previous chapter dealing
with types: the syntax for types uses the same notation, but is simpler. Remember that the * indicate that
the element is repeated a certain number of times (which may be zero). The braces leave the choice
between several elements. For example, {I,S}* corresponds to any given series of | and S. The characters
in bold correspond to the syntax elements found in the source file of a Scol program, while the elements
in italics are rewrite el ements whose meaning is given elsewhere in the table.

A file written in Scol language simply contains the Scol element as defined in the table. The Scol element
issimply a series of definitions (Definition in the table).

There are 8 sorts of definitions:

- fun: function definition

- typeof: definition of avariable by itstype

24

- var: definition and initialization of avariable

- struct: definition of atype of structure

- typedef: definition of type constructors

- defcom: definition of a communication constructor

- defcomvar: definition of a variable communication constructor
- proto: definition of afunction prototype

25

Y ou can skip the following table for now, but it will no doubt come in useful later on.

Scol
Definition

Program
Expr
Arithm
A

A

Definition*

fun Function (Args) = Program;;
typeof Var =TypeMono ;;

var Var = Val ;;

struct NewType =[Fields] Function ;;
typedef NewType = TypeConstr ;;
defcom Com = string {1,S}* ;;
defcomvar Comvar = {I,S}* ;;

proto Function = Type;;

Expr [Expr ; Program
Arithm [Arithm :: Expr
Ay [A; & & Arithm
Ay [1A
A3 | A3 == A3
Az< Az [Az> Ag
A3 >= A3 | A3 =. A3
Az<. Az | Az>. Ag
A3 >=, A3
A | A+ Az
A4 +. A3 | A4 -. A3
As I As* Aq
As*. A I Asl. Ay
As I As& As
As"As I As<<As
Term | -Ag
(Program) | (Program;)
{ Program} | { Program;}
int | ‘char
string | [Arithm*]
Var(.Term)* | set Var(.Term)* = Arithm

Var(.NameOfField)* |set Var(.NameOfField)* = Arithm

Function ArgSrunciion | @Function

let Arithm-> Localsin Arithm

if Arithmthen Arithm else Arithm
while Arithm do Arithm

mutate Arithm <-[{_, Arithm}*]
exec Arithmwith Arithm

26

A || Arithm
A3I:A3
As<=Ag
A3I:. A3
A3<:. A3

As-Ag
Asl A
As| As

As>> As
~Pe

nil

Constr Arithm [Constr0 | match Arithmwith Case

Args: = Arithm ...Arithm : as many Arithms as the F function has arguments

Args = nothing [Args

Args = Local [Local , Args

Locals = Local [[Locals']

Locals = {_, Locals}*

Val = val’ [Val’ :: val

val’ = int [‘char | nil
[string [-int | [Val*]
I (Val)

Fields = Field [Field, Fields

Field =NameOfField : TypeMono

TypeConstr = TypeConstr’ | TypeConstr’ | TypeConstr

TypeConstr’ = Constr TypeMono [ConstrO

Case = Case | Case' | Case | (_-> Arithm)

Case' =(Constr Local -> Arithm)| (ConstrO -> Arithm)

Var = name of variable

Function = name of function

NewType = new basic type defined by the devel oper

Local = local variable (dependent)

NameOfField = name of field in a structure

Constr = type constructor

ConstrO = empty type constructor

Com = communication constructor

Comvar = variable communication constructor

int = integer

char = character

string = string

The integers can be coded in the following bases:

- decimal : 12349

- hexadecimal : Ox3fe

- binary : 0b10011

- octal : 00234235
They are coded on 31 signed bits.

27

The chars are used to retrieve a character's ASCII code: 'A is an integer equal to 65.

The character strings are written between gquotes. The \ character is used to access certain commands:

\n : carriage return

\z : NULL character

\" : quote

\\ : \

\decimal number : \132 isthe character 132

A\ at the end of the line tells the compiler to disregard the new line.
Asin C, comments are written between /*...*/ and can be interleaved.

The (Program), (Program;;), { Program} and { Program;} constructions are all equivalent.

28

5. Basic constructions

5.1 Main elements

5.1.1 Variables

You can define avariable using t ypeof . For example:
typeof x=[I I];;
The x variableis created, it is atwo-integer tuple. The variableisinitialized to ni | .
If you want to directly assign it avalue, usevar :
var x=[1 2];;
However, var cannot be used for certain operations, in particular arithmetic operations.

Y ou can modify the value of a variable using the construction: set Var = Arithm

For example: set x=a+b

This produces a side effect: it is not the result of the set function you are interested in, it is the fact that the
value of x has changed.

5.1.2 Functions

To define a function, place f un in front of the name of the function followed by the list of arguments
between parentheses and separated by commas. Then the ‘=" sign precedes the body of the function
which ends with a double semicolon. For example, the sum function:

fun sum(x,y)=x+y;;
The typing will determine the type of the function: fun [I 1] |
Here the function takes two integers and returns one integer.

You can write arithmetic expressions as standard: (x+y) *z/ w. You can aso use logical C operators:
&, N <<, >3~ &&, ||,) ==, 15, <, >, <=, >,

Arithmetic operations and comparison operations are also available for floating numbers (type F),
however you must place a point after the operator: +., -., >, ...

5.1.3 Tests and conditions

One of the most important constructions in programming is the conditional construction, i.e., the
traditiona ‘if ... then ... else....”. This construction existsin Scol in the same format:
if Cthen T else F

29

where C is a condition, T (respectively F) is the expression to perform if the condition returns true
(respectively false).
In Scol, you must always define the ‘else’ expression.

The condition is necessarily an expression that returns an integer. The result of the condition is considered
to be “true’ if the integer is other than zero, and false if it equals 0. In the condition expression, you can
use C Boolean operators: && and ||. Asin C, the expression is not necessarily completely evaluated:

-A && B :if A isfadse, B isnot evaluated (the result isinevitably false)

-A || B :if Alistrue, B isnot evaluated (the result isinevitably true)

The T and F expressions must return the same type, i.e. the type returned by the construction.
Indeed, the ‘if ... then ... else ...” construction is a function which returns the value of T or of F according
to the value of the condition. The type of thisfunctionis:
fun [I u0 u0] uO
Y ou can integrate the construction in an expression:
1+4if x==0 then 1 else 3
This expression would equal 2 if x equals 0, 4 otherwise.
The same applies for the following function:
fun f(x)=if x then “a” else “b";;
The f function returns the “a’ string if x is non-null, “b” otherwise. In imperative languages such as C,
you do not have this type of operation.

5.1.4. Example

To alow you to carry out your tests, we will modify the hello3 program presented in a previous chapter.
file ' Tutorial/mytest.scol’:

_ _oad "Tutorial / nytest. pkg"

mai n

file ‘' Tutorial/mytest.pkg’:

/* MyTest.pkg */

/* My tests */
fun sum(x,y)=x+y;;

fun nymain()=
itoa sum 10 30;;

30

/* Common part */
fun _end(a, b)=_cl osemachi ne; ;
fun _resize(a,t,x,y)=_SIZEtext t x-2 y-2 1 1;;

fun main()=
Il et CRwi ndow _channel nil 150 150 400 300
WN_MENU| WN_M NBOX| WN_SI ZEBOX "My Test"
->WwWnin
let CRtext _channel win 1 1 398 298
ET_VSCROLL| ET_HSCROLL ""
-> text in
(_CBw nDestroy win @end nil;
_CBwinSize win @resize text;
_SETtext text mymain

)i

In this example, you simply display a text window in which you write (function _SETtext) the result of
the mymain function.

The mymain function must always return a character string. If you are using integers, use the i t oa
function to convert them into character strings before returning them. Using i t oa and st r cat (which
concatenates two character strings), you can display all the results.

Here we are testing the sumfunction on two integers 10 and 30.

In the examples that follow, we will simply give the functions that are to be inserted in place of mynai n
and sum Y ou can carry out your tests yourself.

31

5.2 Using tuples

Tuples are a very practical way of handling heterogeneous sets of data. Their use hides an automatic
memory alocation; that is why tuples do not exist in C. Only a language that automatically manages the
allocation and deallocation of the memory can really use tuples.

The term [Arithm*] constructs a tuple from different expressions present between square brackets. For
example:

[12 nil [34171
isasize4 tuple, whose last element isasize 2 tuple.

Y ou retrieve atuple's components using the | et function:

let [L2nil [34]] ->[a_bc]inA
InA, thea, b and ¢ variablesequa 1,ni |l and[3 4] respectively. You ‘skip’ avalue of the tuple
by inserting an underscore character * _’. This means that you do not want to use this value, nor redefine a
local variable to receiveit.

The rmut at e function modifies one or more fields of atuple:
let [1 2nil [34]] ->tupletest in
nmutate tupletest <- [_ 56 _]

In this example, you start by creating a tuple called t upl et est . The nut at e function replaces the
values 2 and ni | of the tuple with 5 and 6 respectively, without affecting the other fields (where you
have inserted an underscore ‘). This function is ‘dangerous’ since it modifies al the variables that refer
directly or indirectly to the tuple. It is better to recreate a tuple.

Example: we will create a size 3 tuple, modify the second element using nut at e and display its status
before and after the modification.

/* My tests */

fun Tuple3toStr(t)=1let t->[a b c] in
strcat strcat strcat strcat strcat strcat
"["itoaa "™ " itoab "™ " itoac "]\n";;

fun nmymain()=

let [1 2 3]-> nytuple in
strcat Tupl e3toStr nytuple
(nmutate nytuple <- [_ 10 _];
Tupl e3toStr mnytuple);;

You will notice that the value of the expression (Arithm ; Arithm) is the value of the last Arithm term.
This means that the result of the first Arithm term is lost. This imperative approach (non-functional) is

32

usually due to a side effect: here, the mut at e function creates the side effect. You can thus see the
disadvantage of this approach: the result of the first term is lost, which means that information has been
lost. This information has therefore not been verified during the typing, which renders the program more
fragile.

When you run this program, you obtain the following result on the text window:
[1 2 3]
[1 10 3]

5.3 Application to lists

As we mentioned previously, lists in Scol are managed in the form of size 2 tuples. The first element of
the tuple is the first element in the list, the second element of the tuple is the next element in the list. For
example, let| bealist:
let I->[val next] in ...

This expression is used to respectively retrieve the first element in the list and the next element in the list
inthe val and next local variables. The function which returns the first element in the list is called hd.
The function which returns the next element in the list is called t | . These functions are present in the
Scol language, however you can write them in Scol as follows:

l->[val _] in val;;
| ->[_ next] in next;;

The type of these functionsis:
hd : fun [[u0 r1]] uO
tl : fun [[u0 r1]] [uO r1]
Here, you will notice that the two functions are polymorphic: they can be used for any list.

The list always finishes with the empty list, equal toni | .

The easiest way to build a list is to use the ‘::’ list builder. For example, the expression
1::2::3::4::5::nil buildsalist of thefirst five integers. The type of the*: : ’ functioniis:

fun [u0O [uO r1]] [uO r1]
Lists are a very important element in terms of functional languages because they are data structures of
unlimited size (the automatic memory management facilitates their use). They are also data structures
which go well with recursive processing.

Let ustake acloser look at the lists and study the following examples:

33

5.3.1 Size of a list

In the following example, the nysi zel i st function calculates the size of a list. This function is
recursive:

-theni | listhasasizeof O

- any non-empty list hasasize of 1 + the size of the list without its first element

The mymai n function appliesthenysi zel i st function on alist of 5 elements.
The program displays the number 5 in the text window.

/* My tests */
fun nysizelist(l)=

if I==nil then O
elselet | ->[_next] in 1 + nysizelist next;;
fun mymain() =

itoa nysizelist 1::2::3::4::5::nil;;

Thetype of therrysi zel i st function is naturally polymorphic:
nysizelist : fun [[u0 r1]] |

In actual fact, the si zel i st function is aready defined in the language: you do not therefore have to
rewrite it yourself, but it offers a good example.

5.3.2 Quicksort on integers

A classic example: Quicksort.
For this we define three functions, plus a fourth used to display the resuilt.

The conc function takes two lists p and q and returns a new list which concatenates both lists in this
order. It isarecursive function:
- if pisthe empty list, the concatenation of p and g equalsq
- otherwise the concatenation of lists p and g isalist in which:
- thefirst element isthefirst element in list p
- the rest of the list is the concatenation of list p without its first element or list g (recursion).

The di vi del i st function is a little more complicated: its role is to divide a list into two sublists
according to an integer called the ‘pivot’. The elements in the list are placed in one of the two sublists
depending on whether they are less than or greater than the pivot. Here is an important tip: the
di vi del i st function returns two lists, where normally a function can only return a single result. The
solution is to use tuples: the di vi del i st function returns a tuple with two elements which are the two

34

sublists. Thus, in Scol, tuples are basically used for two purposes. to manage lists, and to group elements
together to form a single element, which is easier to manage.

Thedi vi del i st function is not polymorphic, since it supposes (through the use of the > function) that
itisprocessing alist of integers.

The qui cksort function thus works on the basis of avery simple recursive principle:
- the sorted empty list is aways the empty list
- if the list is not empty, by taking the first element in the list for the pivot, the sorted list is the
concatenation of:
- the sorted list of elements |ess than the pivot
- the pivot
- the sorted list of elements greater than the pivot
Thequi cksort functionisnot polymorphic sinceit calsthedi vi del i st function.

The di spl ay function is simply used to creste a character string representing the list, where the
elements are separated by ‘:;’ and which ends with ‘nil’. This function is not polymorphic, since it
supposes (through the use of thei t oa function) that it is processing alist of integers.

The result of this programis: 2::3::5::6::8::nil
Later on, we will see aquicksort variant which works on ordinary lists.
[* MyTest */

/* concatenation */
fun conc(p, q) =
if p==nil then q
el se
let p->[a n]
in a::conc n q;

[* quicksort */

fun dividelist (x,p)=
if p==nil then [nil nil]
el se
let p->[a n] in
let dividelist x n ->[r1r2] in
if x>a then [a::rl r2]
else [rl a::r2];;

fun quicksort (1)=
if I==nil then nil
el se

35

let 1->[vl nl]
inlet dividelist vl nl -> [va na]
in conc quicksort va vl::quicksort na;;

[* display list */
fun display(l)=
if I==nil then
el se
let 1->a n]
in strcat strcat (itoa a)

"::" display n;;
fun nmymain()=
di splay quicksort 3::5::2::8::6::nil;;

5.4 Using tables

Tables arerarely used in afunctional language. Lists are used as a preference for three reasons:

- Tables are less suitable for recursive agorithms.

- Tables are not expandable; you define their size once only.

- You cannot prevent the developer from writing a program that attempts to use a cell in the table outside
its limits. Thisindex overflow cannot be detected during the compilation, and is thus a source of error.

However, the table holds one advantage over the list: elements are all accessed in constant time.

A table can in particular be created using the mktab command, which takes the size of the table and an
initialization value as arguments.

Thei-th element inthetable T is accessed by writing: T. i

If the table T is a table of tables, the j-th element of the i-th element of T is accessed by writing: T. i . j
(indexes can be accumulated without limit).

To modify avaluein the table, you simply write: set T.i = ...

5.5 Further details on certain basic constructions

The" set X =V ” function returnsthe value V (the storage of V in X is merely a side effect).

The * while Condition do Expression” function calculates the condition (which must be an integer). If
thisinteger is true, the expression is calculated and the condition evaluated again until it isfalse. It returns
the result of the last expression calculated (nil if no expression was calculated, i.e., if the condition was
falseright from the first evaluation).

36

The® let X ->NinY " function calculates X, creates the local variables contained in N then calculates Y
and returns the result of Y. The static scope of variables contained in N islimited to expression Y.

5.6 Using structures

Structures are used a bit like in C. A structure is a particular type containing one or more fields. Each
field is defined by a field name and an associated type. For example, a structure Rec containing three
integers and a string is written:

struct Rec = [xRec:1,yRec:1,zRec: |, naneRec: S| nkRec;;

In this example, the developer chooses the names Rec, XRec, yRec, zRec, nanmeRec and nkRec. The
only constraint is that the name of the new type (here Rec) must begin with an uppercase | etter.

Where x is an object of type Rec, the different fields are accessed by writing x. XRec, X. yRec,
X. zRec or x. naneRec. The names of the fields are considered as functions: for example, xRec isa
function of type“ fun [Rec] | ”. For thisreason, if two structures use the same field name, there
will be an overlap: the second definition will hide the first.

To build an object of type Rec, you need a constructor: thisisthe role of mkRec which, in this case, isa

functionof type“ fun [[1 | 1 S]] Rec”.Example

fun main()=

let nkRec [1 2 3 "abc"] ->r
inr.xRec;;

This function returns 1.

To modify the value of afield, simply write:
set r.xRec = ...

5.7 Using type constructors

In some cases, it can be useful to use a variable with several different types: in variable x, you sometimes
want an integer, other times a character string, and other times a tuple. Typing forbids this type of
operation. To make it possible, you must use the equivalent of the union in C: these are type constructors.
Take an example:

typedef U =
xU |
| sUS

37

| tUTI 1]
| nU;;

This defines a new type U, which can contain either an integer, a string, a two-integer tuple or nothing at
al. The names xU, sU, tU and nU are called type constructors. They are considered as functions. For
example, xU isafunctionof type“ fun [1] U”.

We refer to them as constructors since only they can be used to construct an object of type U. The object
constructed in this way contains two pieces of information: the name of the constructor used, and the
useful value. The last nU constructor is special since it does not use avalue; it is called constructorO.

An object of type U is processed using the match function.

fun nunconstr(x)=
match x with
(xUu ->0)

| (sUv -> 1)

| (tU [uv] ->2)

| (nU -> 3);;

This function takes an element x of type U, and returns 0, 1, 2 or 3 respectively for x constructed with xU,
sU, tU or nU. Y ou can define one line of cases by default:

fun fromsuU(x)=
match x with
(sUu ->1)

[(_->0);;

This function takes an element x of type U and returns 1 if x was built with sU, 0 in &l other cases.
If the program does not define any cases by default (_->...), the compiler “adds’ the line (_->nil).

The match function is not content with merely finding a variable's constructor, it also retrieves the value
of the construction, asillustrated in the following example:

[* MyTest */

typedef Node =
Int |
| Add [Node Node]
| Mul [Node Node];;

fun Eval Node(n) =
match n with
(Int x -> x)

38

| (Add [a b] -> (Eval Node a)+(Eval Node b))
| (Ml [a b] -> (Eval Node a)*(Eval Node b));;

fun nymain()=
itoa Eval Node Mul [Add [Int 1 Int 2] Int 3];;

In this example you define a Node type used to code trees of expressions containing integer constants,
additions and multiplications. The EvalNode function calculates the values of such atree.
Here, the mymain function cal culates the tree corresponding to the expression: (1+2)*3

5.8 Using the functions

Scol can handle functions in the same way as integers or character strings. To do so we use language
commands.

The'@' operator is used to convert a function name to a function object. Thus, the compiler considers that
a function name not preceded by ‘@' represents a call to the function, with the parameters that follow.
When preceded by ‘@', the compiler considers that a function object must be created for a subsequent
operation.

In order for the handling of functions to be useful, you need to be able to apply a function object to a set
of arguments and calculate the result. For this purpose you use the exec...with... function. Example:

fun baradd(x,y)= x+y;;
fun barml (x,y)= x*y;;

fun foo(x,y,f)= exec f with [x y];;
fun mainl()= foo 1 2 @aradd;;
fun mai n2()= exec @aradd with [1 2];;
fun mai n3()= baradd 1 2;;
The three mainl, main2 and main3 functions return the same resullt.
The type of the foo function is noteworthy:
foo : fun [uO ul fun [uO ul] u2] u2
Indeed, the foo function takes two ordinary arguments x and y and a function f which is not ordinary: it is
a function which takes two arguments of the same type as x and y (types u0 and ul). The foo function
returns aresult of the same type as the f function.

Here you will note that the use of functionsin Scol is done in amanner completely controlled by typing.
39

Another way of using functions consists in creating a function from another function and from an
argument. We will call this anode. Scol provides afunction that performs this operation:

mknode: fun [fun [u0 ul] u2 ul] fun [u0] u2
Example:

fun f(x,y)=(atoi x)+y;;
fun g()= let nknode @ 1 -> h in exec h with ["16"];;

The g function defines an h function which is equal to the f function, an argument of which we will have
set (here the second).

-thetypeoffis.fun [S 1] |1

-thetypeof hissfun [S] |

To generaize the mknode function, you define functions mkfunl, mkfun2, ..., mkfun8. For example
mkfun8 takes a function with 8 arguments and an argument, and returns a function with 7 arguments.

mkfun8: fun [fun [uOul u2 u3 u4 u5u6 u7] u8 u7] fun [uO ul u2 u3 u4 u5 u6] u8

Note that the mkfun2 function is the same as the mknode function.

5.9 Redefining functions

In a Scol file, you can only declare a name once. Furthermore, an f function referenced in a g function
must be defined upstream of the g function.

When compiling severa Scol files in succession, you can redefine a name defined in a previous file, with
the exception of type names.

In some cases, it can be useful to predefine the type of a variable or function. This is essentia for
variables that include types other than tuples, lists, integers and character strings. It is also essential when
two functions call each other.

Example 1:

/* definition of an integer list-type variable */

typeof x = | rl];;

var x=[1 [2 [3 nil]]];;

/* without the typeof, the |anguage would determne the type of x as
[1 [[I u0l]l], which contains a free variable */

40

Example 2:
/* functions which refer to each other */
proto g= fun[I] I;;

fun f(x)=if x>0 then 1+ g x-1 else O;;
fun g(x)=if x>0 then 1+ f x-1 else O;;

If you want to initialize avariable to nil, it isuselesswriting: var x = nil;;
t ypeof isused both to predefine atype and to initialize the variable to nil.

Example 3:

[* definition of an enpty integer list variable */
typeof x=[1 r1];;

fun f()=set x =[1[2 [3 nil]l]l];;

Conversely, you can define a variable, a prototype, a type constructor or a structure calling on a type
which has not yet been defined. You will be able to define this type later (in a subsequent package for
example), but only once.

5.10 New examples

You are now familiar with al the Scol language calculation principles. We shall now present a variant of
the quicksort program; this time it will be polymorphic, and will be used to delete duplicates (elements
present twicein the list).

The idea is fairly simple: you give the quicksort function a list to sort and a function for comparing two
elementsin thelist.

This function — which has two arguments (the two elements to be compared) — must return:

- adtrictly positive number if the first element is greater than the second

- agtrictly negative number if the first element isless than the second

- zero if both elements are equal and provided you want to delete the duplicates from the list. If you do
not want to delete the duplicates, smply return any non-null integer when two elements are equal .

The following program performs two sorts. one on alist of integers, another on alist of character strings.
The display functions are not polymorphic: there is one to display the list of integers, and another to
display thelist of character strings.

Here, the type of the quicksort function equals:
fun [[u0 r1] fun [uO uO] 1] [uO r1]

41

In the nyst r cnp comparison function, note the use of the st r cnp function. This function, which you
will find in most programming languages, compares two character strings. It returns 1 if the first is greater
(in alphabetical order) than the second, -1 if thefirst is less than the second, O if the two strings are equal.

[* MyTest */

fun conc(p,q)=
if p==nil then q
el se (hd p)::conc (tl p) q;

fun dividelist (x,p,f)=
if p==nil then [nil nil]
el se
let p->[an] in
let dividelist x nf ->[r1r2] in
let exec f with [a X] ->7r in
if r==0 then [rl r2]
else if r<0 then [a::rl r2]
else [rl a::r2];;

fun quicksort(Il,f)=

if I==nil then nil

else let I->[vl nl] in

let dividelist vl nl f->[va na] in

conc quicksort va f vl::quicksort na f;;

[* display list */
fun displaylntList(l)=
if I==nil then "nil\n"

el se
let 1->a n]
in strcat strcat (itoa a) "::" displaylntList n;;

fun displayStrList(l)=
il\n"

if I==nil then "n

el se

let 1->a n]

in strcat strcat a "::" displayStrList n;;

fun myintcnp(a, b)=a-b;;
fun nystrcnp(a, b)=strcnp a b;;

fun nymain()=
strcat

42

di spl ayl nt Li st
qui cksort 3::5::2::8::6::5::nil @yintcnp
di spl ayStrLi st
qui cksort "ab"::"abc"::"xy"::"www'::"pgr"::nil @rystrcnp;;

The program returns the following result:
2::3::5::6::8::nil
ab: :abc::pqgr::ww : xy::nil

You will notice that the duplicates have indeed been deleted, i.e., the number 5 which appeared twice in
the list to be sorted.

5.11 Standard library

In this section, you will find the list of basic functions in the Scol language. The typeisindicated for each
function. The functions are grouped into several categories:

- functions on integers

- functions on character strings
- functions on lists

- functions on tables

- functions on floating numbers
- time functions

- console functions

Besides the classic functions found in al programming languages, you will notice in particular the
following functions:

- zip and unzip: compression and decompression of a character string.

- strextr and strbuild: breakdown of a string into a list of lines, whereby each line is alist of words. This
simplifies all problems relating to parsing.

- _getlongname: function for hashing (or signing) a character string.

5.11.1 Functions on integers

rand : fun [] |
Returns a random integer, between 0 and 65535.

srand : fun [1] |
Initializes the random series with an integer. Returns 0.

mex : fun [I I] 1
Returns the max of two integers.
43

min: fun [I |] I
Returns the min of two integers.

abs : fun [|] I
Returns the absolute value of an integer.

md : fun [I |] |
Returns the remainder of the division of oneinteger by another.

5.11.2 Functions on character strings

strlen : fun [S] |
Returns the size of a character string.
For example, strl en “12abc345de” returnstheinteger 10

strcat : fun [SS] S
Concatenates two character strings (the two initial strings are not modified).
For example, strcat “12” "abc” returnsthe string “12abc”

strcatn : fun [[Srl]] S

Concatenates a list of character strings (egquivalent to, but more efficient than, the previous function
repeated

n-1 times).

For example, strcatn “12"::"abc”::"345"::"de": : nil returnsthe string “12abc345de”

strcnp : fun [S S]] I
Compares two character strings (using the standard C function).

strfind : fun [SS1] I

Searches for the first string in the second string from the position passed as a parameter (the first
character isin position 0). Returns nil if the string was not found, or else the position in which the string
was found.

strfindi : fun [SSI1] I
The same as above, but without taking into account the differences between upper and lowercase
characters.

listtostr : fun [[I r1] 1 S

Transforms a list of integers into a character string: each link gives a character. The first link gives the
first character.

For examplel i sttostr 65::66:67::nil returnsthestring “ABC"

a4

strtolist : fun [ST [| rl1]
Reverse of the previous function.
For examplestrtol i st “ABC’ returnsthe string 65::66::67::nil

atoi : fun [ST I
Interprets a character string as an integer.
For example, at oi “53” returnsthe integer 53

itoa: fun [I] S
Reverse of the previous function.
For example, i t oa 53 returnsthe string “53”

ctoa: fun [I] S
Creates a character string containing a single character of ASCII code.
For example, ct oa 65 returnsthe string “A”

htoi : fun [S] I
Interprets a character string as an integer coded in hexadecimal (unsigned).

itoh : fun [I] S
Reverse of the previous function.

substr : fun [S1 I] S

Returns a substring of the string passed as an argument.

The first integer gives the substring's initial position, whereby the first character is in position 0, and the
second integer gives the substring's size.

For example, subst r “abcdef” 2 3 returnsthe string “cde”

strdup : fun [S] S
Creates a copy of a character string in the memory. This is only useful when you modify a character
string "on the spot” using the set_nth_char function defined below.

strlowercase : fun [S] S
Creates a copy of acharacter string, replacing the uppercase letters with lowercase ones.

struppercase : fun [S] S
Creates a copy of acharacter string, replacing the lowercase letters with uppercase ones.

strcmpi @ fun [S S]] |
Compares two character strings without considering upper/lowercase (using the standard C function).

nth_char : fun [S I] I
Returns the n-th character of a string.

45

set_nth_char : fun [S1 I] S
Modifies the n-th character of a string (danger: the string is modified "on the spot”, all the pointers to the
string are affected by this modification; thisis a side effect).

zip: fun[S]1 S
Compresses a character string.
The compression rate is 60\% on average.

unzip : fun [S] S
Reverse of the previous function.

strtoweb : fun [S] S

Converts an ordinary character string into one only containing alphanumeric symbols as well as ‘+' and
‘%'

alphanumeric characters are retained

spaces are replaced by ‘+’

other characters are replaced by a“‘ %’ followed by 2 hexadecimal digits.

webtostr : fun [S] S
Reverse of the previous function

_getlongnanme : fun [S1 S2 S3] S

This function is used to manage files, but can be practical for other uses. It performs a signature.
-Slisthe string to sign

-S2 isan ordinary string

-S3 codes the signature type, using the specific character

- "#": first signature type

This function returns the concatenation of S2, of the signature's specific character and of the signature of
the S1 string.

lineextr : fun [S] [S r1]
The lineextr function breaks down the initial text into lines (the lines are separated by the characters 10 or
13).

linebuild : fun [[STr1]] S
The linebuild function is the reverse of the previous function. It reconstitutes the text by concatenating the
lines, separated by a character 10.

strextr : fun [S] [[S r1] r1]

The strextr function breaks down the initia text into lines, then each line into words, and builds the result
in the form of alist of lines, whereby each line is alist of words. Only lines containing at least one word
are retained.

46

Y ou can insert special characters in words using the \ character:

-\\ for the\ character
-\+'" (backslash followed by a space) for the space character
-\+decimal number of at least 3 digits for any ASCII code

A\ at the end of the lineis used to ignore the new line.

For example, strextr “abc def\nl 23 456" returnsthe doublelist
(“abc”:" def" nil):: (" 237::7 456" :nil)::nil

strbuild : fun [[[Sr1] r1]] S
The strbuild function is the reverse of the previous function. It reconstitutes the basic text, replacing the
special characters by their equivalent with \

5.11.3 Functions on lists

list builder * ::’
List builder operator. For example, to build the list of the first 5 integers:
1:2:3:4:5:nil

hd : fun [[u0 r1]] uO
Returnsthefirst element in alist.

tl : fun [[uO r1]] [uO r1]
Returns the list without the first element.

sizelist : fun [[u0 r1]] |
Returnsthe size of thelist.

nth list : fun [[u0 r1] I] uO

Returns the n-th element in alist (the elements are numbered from 0). If the element does not exist, nil is
returned.

Forexamplenth_list 3::5::4::6::nil 2 returnstheinteger 4.
endlist : fun [[u0 r1] I] [uO r1]
Returns the list from the n-th element (the elements are numbered from 0). If the element does not exist,

nil isreturned.

For exampleendl i st 3::5::4::6::nil 2returnsthelist 4::6::nil.

47

5.11.4 Functions on tables

sizetab : fun [tab uO] I
Returns the size of a given table (the table's number of cells).

nktab : fun [| u0] tab u0
Creates atable of agiven sizeinitialized with a given value.

tabtolist : fun [tab u0O] [uO r1]
Creates alist from atable, taking the elements in increasing index order.

tabtolistR: fun [tab u0O] [uO r1]
Creates alist from atable, taking the elements in decreasing index order.

listtotab : fun [[uO r1]] tab u0
Creates atable from alist, retaining the order of the elementsin the list.

listtotabR : fun [[u0O r1]] tab u0
Creates atable from alist, inverting the order of the elementsin thelist.

48

5.11.5 Functions on floating numbers

itof : fun [I 1 F
Transforms an integer into a floating number.

ftoi : fun [F] I
Transforms a floating number into an integer (by rounding the floating number).

ftoa: fun[F] S
Transforms a floating number into a character string.

atof : fun [S] F
Reverse of the previous function.

absf : fun [F] F
Calculates the absolute value of a floating number.

PIf : fun [] F
Returns the constant pi.

cos : fun [F] F
Cosine function.

sin: fun [F] F
Sine function.

tan : fun [F] F
Tangent function.

acos : fun [F] F
Arc cosine function.

asin: fun [F] F
Arc sine function.

atan : fun [F] F
Arc tangent function.

atan2 : fun [FF] F
Arc tangent function with two arguments: “atan2 y x” returns the signed angle formed between the axis of
the abscissa and the point (X,y).

Ef : fun[] F
49

Returns the constant e.

log: fun [F] F
Logarithm function.

logl0 : fun [F]1 F
Logarithm function in base 10.

exp : fun[F1 F
Exponential function.

pow: fun [FF] F
Power function: “"pow X y" returns x to the power of y.

sqr : fun [F]1 F
Calculates the square of afloating number.

sqrt : fun [F]1 F
Calculates the square root of a floating number.

rootn : fun [FF] F
Calculates the n-th sguare of afloating number: “ rootn X y ” returns x to the power 1/y.

5.11.6 Time functions

time @ fun [] |
Returns the number of seconds passed since January 1st 1970.

ctime : fun [I] S

Returns a character string giving the time and date in the following format: ~"Tue Jan 21 11:24:53 1997".
The parameter is the number of seconds passed since January 1st 1970, typically issued from the previous
function.

_tickcount : fun [] |
Returns the number of milliseconds passed since the machine was started.

5.11.7 Console functions

_showconsole : fun [] |
Displays the console.

50

_hideconsole : fun [] |
Hides the console.

_fooS: fun [§] S
Sends a character string to the console. Returns the same string. The string must not be more than 4MB.

_fool : fun [I] |
Sends a hexadecimal integer to the console. Returns the same integer.

_foolList : fun [[I r1]] [I r1]
Sends alist of hexadecimal integers to the console. Result unchanged.

_fooSList : fun [[Sr1]] [S r1]
Sends alist of strings to the console. Result unchanged.

6. Global variables of the Scol machine

The Scol machine manages a list of resource variables which we will simply refer to as ‘resources'.
These variables are defined by their name, and are associated with a character string. They are
independent of the channel management, and in particular outlive the channel which defined them.

The API contains two instructions:
_getress : fun [S] S
Finds a resource of a certain name and returns the associated value (nil if the resource is not defined).

_setress : fun [S S,] S
Defines the resource S; with the value S, and returns S,. If the resource did not exist, it is created. If it
existed, the new valueisassigned to it. If S, equals nil, the resource is destroyed.

Scol uses a resource initiaization file, called usmressini, located in the Scol directory (usually
C:/Program Files/Scol). Thisis atext file containing lines of two words, whereby the first is the name of a
resource and the second the corresponding value.

Thisfileis analyzed at the start of the SCOL machine's operation using the following program:

fun multiress(res)=

if res==nil then 0

else let res ->[[] n] nxt] in

(if strecrp | "#" then _setress | hd n else nil;
mul tiress nxt);;

51

multiress strextr _|oadressini;

Notethe | oadr essi ni function:

_loadressini : fun [] S
Reads the usmress.ini file and returns it in a character string. This file is not usualy in one of the Scol
partitions, which iswhy you need a specia function to read it.

There are two special variables which can be considered to be resources. the version number and name of
the SCOL machine;

_version : fun [] |
Returns the version number.

_versionnane : fun [] S
Returns the version name.

52

The order in which the following chapters are presented is of no special importance. It is up to you to
establish your own order according to the topics that interest you. If you are interested in the details of the
Scol language, start by reading the sections on Channels and communications and File management.

If you are impatient to start developing your first programs, go straight on to the section dealing with
event-driven programming.

V. Channels and communications

In Scol, the notion of channel is closely linked to the notion of communication. In fact, network
connections are systematically linked to an environment to form a channel. In the first section we explain
how to create and manipulate channels. In the second section, we show how to use these channels to
communicate from one machine to another.

1. Manipulating channels

We saw at the beginning of the previous chapter that the Scol machine is based on the notion of the
channel. The Scol machine is multi-channel. Each channel is a pair (environment, network connection).
The network connection is usualy a TCP/IP or UDP socket-type connection. However, there may be no
network connection, in which caseit is called unplugged.

Channels and environments are objects that can be easily manipulated in Scol. Two types are therefore
associated with them:

- the Chn type represents a channel.

- the Env type represents an environment.

1.1 Channel manipulation API

_channel : fun [] Chn
Returns the current channel.

_script : fun [S] |

Runs a script in the environment of the current channel. Each line of the script isin the form of command-
arguments: the range is dynamically defined. The result is 0. An unknown command or a mistake in
typing the parameters are not considered as errors. the command is simply skipped. The exact syntax of a
script is defined further on, but we can aready say that it as the same as the *.scol files (see the ‘Hello
World' examplesin chapter I1).

_scriptc : fun [Chn §] |

53

Same as above, but in a different channel, which is specified by parameters.
Note: _script Xisequivalentto_scriptc _channel X

_load : fun [S] |
Loads and compiles a Scol file (also called package) in the current channel whose name is passed as a
parameter (see further on under file management).

_setchannel : fun [Chn] Chn
Changes the current channel (to be used with caution).

1.2 Environment management API

_envchannel : fun [Chn] Env
Returns the environment associated with a channel.

_renmovepkg : fun [Env] Env
Returns the environment from which you retrieved the package located at the start (i.e., the last package
compiled).

_envfirstnane : fun [Env] S
Returns the name of the first package in this environment. By using this function severa times with
_renmovepkg, you can find out the names of every package in an environment.

_setenv : fun [Chn Env] |
Changes the environment of a channel. If the environment is nil, the channel will retake the minimal
environment.

1.3 Creating and destroying a channel

1.3.1 TCP/IP channel

Since a channel is a pair (environment, network connection), to create a channel you have to specify both
elements of the pair. To do this you use the _openchannel function. This function creates either an
unplugged channel or a channel with a TCP/IP connection.

This function uses three arguments:

- the connection address (ni | if the channel is unplugged). The address is a string comprising the 1P
address of the server to be contacted and the port number, for example: “123.234.54.34:1025". If the IP
address is omitted, the connection is made locally (“:1025” is equivaent to*127.0.0.1:1025")

54

- ascript (the syntax is defined further on)
- the environment which the channel will inherit. If the environment is ni | , the channel inherits the
minimal environment.

The function returns the channel created. Thisisni | inthe event of an error.

_openchannel : fun [S S Env] Chn

The _openchannel function operates as follows. a new channe is created with the environment
passed as a parameter and the possible network connection. Then the script is run on this new channel.

Example: you want to create an unplugged channel which inherits the environment of the current channel,
and in which you want to compile the package “new.pkg” and run the main function located in this
package. Y ou need to write:

_openchannel nil * _|oad \”"new. pkg\”\nmai n” _envchannel _channel

The following version is equivalent:

_scriptc
(_openchannel nil “” _envchannel _channel)
“_load \”"new pkg\”\ nmain”

In order to open a channel to port 2000 of a machine whose IP address is 1.2.3.4, give it the minimal
environment, compile on it the package “new.pkg” and run the main function located in this package, you
need to write:

_openchannel “1.2.3.4:2000” “_load \”"new. pkg\”"\nnmain” nil

1.3.2 UDP channel

Y ou can create a channel whose network connection is a UDP listening socket:
_setUDP : fun [Env I S] Chn

This function takes an environment, a port humber and a script. A UDP channel is created on the port
whose number is given, with the specified environment in which you begin by running the script.
Remember that UDP messages are not totally reliable: transmission and order of arrival are not

guaranteed. However, because there is no buffering, the latency of transmission is negligible.

The UDP channel is not connected to another channel: several correspondents can send messages to this
channel, and there is even a broadcast potential.

55

1.3.3 Destroying channels

_closechannel : fun [] |
Closes the current channel.

_killchannel : fun [Chn] |
Closes the specified channel.

_closemachine : fun [] |
Closes al channels, and therefore stops the SCOL machine.

1.4 Creating and destroying a server

We have just seen how to open TCP/IP channels using the _openchannel function. To do this, we saw
that you have to specify the correspondent’s IP address and port number. This means that the
correspondent “waits for” this type of connection. In network terminology, the correspondent is said to
have opened a server on this port. Obviously, the Scol language can be used to open and manipulate
these servers. These are Sr v-type objects.

Y ou use the following function to define a server:

_setserver : fun [Env | §] Srv

Opens a server on the port number and with the script passed as parameters. Returns nil if impossible (the
port is probably already being used by another server). The server thus created inherits the environment
passed as a parameter.

When a connection to this server is requested, i.e., when another machine has run the _openchannel
function with this server's address, a new channel is created. This channel inherits the environment
defined with the server. The script defined with the server is then immediately run in this new channel.

Once created, a server channel is indistinguishable from a client channel. This is one of Scol’'s key
concepts: once the connection is made, communication is symmetric.

For example, let us suppose that the following function is called on Alice’ s machine:

_setserver _envchannel _channel 2000 “_|oad \”new. pkg\”\nnmain”

A server is created on port 2000. The environment defined with the server is the current environment. The
script defined with the server compiles the “new.pkg” file and runs the mai n function.

When a connection is opened from another machine, let's say Bob's, a channel is created on Alice's
machine, which inherits the environment and in which the script is run. There is now on Alice's machine
a channel that is connected to a channel on Bob's machine. This connection is symmetric and allows data
to be exchanged between both machines.

56

Y ou use the following function to stop a server:

_closeserver : fun [Srv] |

Destroys the server passed as a parameter.

NB: this only ends the potential to receive new calls on this server and does not destroy the channels that
have been created fromit.

1.5 Additional functions of channel management

_channel name : fun [Chn] S
Returns the complete address of a correspondent of a channel (IP address and port number): for example,
“127.0.0.1:1234".

_channelIP : fun [Chn] S
Returns the correspondent’s | P address only: in the previous example, “127.0.0.1” only.

_channel port : fun [Chn] |
Returns the correspondent’ s port number: in the previous example, 1234,

_gethostbyname : fun [S] S
Common function that carries out address resolution in the direction machine name->IP address. NB: this
is ablocking function: it may stop the machine for several secondsiif resolution is difficult or impossible.

_getnamebylP : fun [S] S

Common function that carries out address resolution in the direction IP address->machine name. NB:
this is a blocking function: it may stop the machine for several seconds if resolution is difficult or
impossible.

_hostnane : fun [] S
Returns the host name. If the host has no defined name, returns ~localhost".

_hostIP : fun [] S
Returns the host’s | P address: if the host does not have one, returns “127.0.0.1".

_channeltime : fun [Chn] |
Returns the time elapsed since the channel was created (in seconds).

_servertime : fun [Srv] |
Returns the time elapsed since the server was created (in seconds).

57

1.6 Script syntax

Aswe indicated earlier, here we specify script syntax. Scripts are used in a number of cases:
- start-up *.scol files on the Scol machine.

-_script functionsand _scri ptc.

- the functions which create channels and servers, such as environment initialization scripts.

A script isacharacter string ending in O.
A script is made up of one or more lines: the lines are separated by the characters 10.
Each line comprises words separated by code characters less than or equal to 32.

The first word is a mnemonic, which normally corresponds to a function name.

The following words are:

- either NIL

- or a hexadecimal integer (8 figures at most)

- or acharacter string beginning and ending witha™

In the character string, the backsash character (\) has a particular significance:

\n: 10 character

\z: O character

\ decimal number (three figures at most): any code character

\other: the backslash isignored and you skip to the next code character greater than or equal to 32
Thus for the\ character, we shall use\. For the" character, we shall use\".

Each line of script isinterpreted as a command followed by arguments. These arguments may be either
integers, character strings, or NIL (the only possibility for the other types).

NB:

* scol filesmust not be too long: in fact, their size islimited by the size of the command line accepted by
Windows. Restrict yourself to three or four lines. In other uses of scripts, thereis no limit to the size of
the script.

Example for a*.scol file script:
_load "foo. pkg"
mai n 1234 "qgsd\\ g\ "sdf\ n\ 0\ 12\ 234\ 0122" NI L

Same script used withthe _scri pt function:
_script “_load \"foo.pkg\"\nmain 1234 \"gsd\\\\g\\\"sdf\\ n\\ OV 12V\ 234\\ 0122\ " NI L”

58

2. Communications in Scol

2.1 Controlling connections: particular events

Opening a channel with the _openchannel function takes a certain amount of time (up to a few
seconds). The computer has to find its way through the network, then communicate with the other
machine to check that a server is indeed open. This raises the question: when is the connection really
established?

The _openchannel function isin fact virtually instantaneous. the channel is created immediately, the
network connection is started and the program continues before the connection becomes fully active.

When the connection is made, the Scol machine looksfor a‘_connect ed’ name function of the type:
fun [] ?

(The question mark means that the machine is not concerned with the result type of the _connect ed

function.)

If the _connect ed function has not been defined, nothing happens and the machine continues as

normal, otherwisethe connect ed functionisrun.

The same thing happens on the server: a channel is created on the machine that hosts the server, the script
isrun onit, and the possible _connect ed function is then triggered on it.

Another network event may occur unexpectedly: disconnection. This may be due either to the
correspondent destroying the channel or shutting down the machine, or it may be due to a network
problem. In this case the Scol machine closes the channel which lost its correspondent, but before it does
soitlooksfora‘_cl osed’ name function of the type:

fun [] ?
If the _cl osed function has not been defined, nothing happens and the machine continues as normal,
otherwisethe _cl osed functionisrun.

Similarly, if the server has reached the maximum number of simultaneous connections that it can handle,
the ful | server functionisrunin the server’s environment.

2.2 Sending a message using the _on function

Once a channel is created, messages may be sent in both directions. The messages that circulate are
always in the form of “command arguments’. In fact, they take the form of a single-line script. When a
message arrives, the Scol machine looks in the environment of the channel for a function whose name is
“__command” (the double underscore is added by the receiving machine and ensures that only functions

59

beginning with a double underscore can be activated by the correspondent). If this function exists, the
Scol machine checks the type of arguments. If everything corresponds, the function is run and the result is
lost: only the side effects will count.

The Scol language provides a simple solution for using the channel in the send direction. Let’s take the
following example: Bob wants to send on the channel Al i ceChannel the f oo command with three
parameters: two integers, 123 and 345, and a string, "bar ".

Thefunction you useiscalled“_on”, it isof thetype: fun[Chn Conmi | .

Note: messages sent on an unplugged channel are simply ignored.

With the _on function, the preceding example is written:
defcomX = foo I | S;;
”_on Al'i ceChannel X [123 234 "bar"];
Subsequent to def com the compiler defines acommunication constructor X of the type:
fun[[1 I S]] Comm
X isthus a function that takes a tuple of three elements (an integer, an integer, then a string) and returns a
message containing these three arguments preceded by the “foo” command. Communication builders are

used only to passintegers (1) and character strings (S).

Let us definethe _on function:
_on : fun[Chn Comm |

To make it simpler to write, the same name may sometimes be given to the command and to the
communication constructor:

defcomfoo = foo | | S;;

" on AliceChannel foo [123 234 "bar"];

NB: messages produced by communication constructors for sending using the _on function should not be
too long (less than 8 Kb).

There is a variant with def comvar . This variant is particularly good for the use of “callbacks’. For
example, let therebea“cal | ” function which takes a string and an integer at the start and has to send a

60

message with an argument that is the integer and a command that is the string. The static definition of the
command name with def comcannot solve this case. Thedef comvar function must then be used:

defconmvar Y = 1|;;
fun call(s,i)=
_on AliceChannel Y s [i];;

TheY function created here hasthetype“f un[S [I]] Commni. The string that it waits for will be used
as a command.

The example in the previous paragraph is thus written:
defconmvar Y = | | S;;

._on Al'i ceChannel Y "foo" [123 234 "bar"];

2.3 Controlling message queues

When a message is sent by the _on function on a TCP/IP-type channel, it is placed in a queue particular
to the channel. The Scol machine tries to send it as quickly as possible. The size of the queue (caled fifo:
First In First Out) can usefully be controlled by means of two functions:

_waitingfifo: fun [Chn] |
Returns the number of messages present in the queue.

_sizewaitingfifo : fun [Chn] |
Returns the size in bytes of all the messages present in the queue.

_setsizefifo: fun [Chn |] Chn
Defines a maximum size for fifos (nil: no size limit). If the size of the fifo is exceeded during an _on, the
channel is disconnected and a_closed event will occur.

Note: the Scol fifo is located between the Scol application and the computer’s network layer fifo, whose

size is difficult to calculate. Restricting the size of fifos is primarily to protect the Scol machine from
having insufficient memory, since channel fifos and Scol applications coexist in the same memory strip.

2.4 Sending a UDP message

We have seen how to create a UDP channel with the _set Udp function. This channel is actually a UDP
server: it listens on a particular port for UDP messages that are sent to it. These messages are also Comm-

61

type objects, and when a message arrives, the Scol machine looks in the environment of the channel for a
function whose nameis“__command”, exactly as with the _on function.

To send amessage to a UDP channel, you use:
_sendUDP : fun [S Conm] |

You can aso send a UDP message via a UDP channel (created by _set UDP), using the following
function. This may be useful for getting past some proxies in the outer to inner direction: in fact, some
links remember that an internal UDP “server” sent a message to an external UDP server, and then
authorize it to respond, which enables UDP messages to get past the link in the outer to inner direction:
_sendUDPchn : fun [Chn S Conm] |

The string contains the correspondent’s address (in the same format as for _openchannel). A
broadcast address may be used.

In contrast to a TCP/IP channel, a UDP channel is not associated with a single machine: everyone can
send it amessage. It may be useful on the UDP channel to know the | P address of the person who sent it a
message. For thisyou use the _channel | P function described above. In fact, the value returned by this
function is updated every time a message is received.

2.5 Another use for communication constructors

Above we mentioned the similarity of syntax between Communication (Comm) messages and scripts,
specifying that a communication is in fact a single-line script. Moreover, we saw that on the one hand
communication constructors make it particularly easy to define a Comm message, while on the other hand
the syntax of scriptsis rather complicated.

A program might need to build a character string itself that will be used as a script. It would not be easy to
build it “manually” using functions on character strings, especially if the script contains character-string
arguments that include special characters such as“ and \, or if the script contains integer arguments to be
written in hexadecimal notation.

To simply this task, the Scol language provides a link between Comm objects and S character strings; the
following function is used to convert a Comm structure into a string that can be used by a script:

nkscript : fun [Comm] S
The string obtained contains a line of script followed by a carriage return, which means that lines of script
can be concatenated easily.
Example:
defcom |l oadScr = load S ;;
defcom mainScr= main S 1 ;;

62

_openchannel ":1234"
strcat (nkscript |loadScr ["foo.pkg"])
(mkscript mainScr ["bar™ 123])
_envchannel _channel

The parentheses are unnecessary here.
On running, the second argument of the_openchannel function will be:
“ load \"foo.pkg\"\nmain \"bar\” 7B

3. Methodology of network programming in Scol

The principle of communication in Scol is thus as follows:. machines exchange messages with each other
on channels. When a machine receives a message on a channel, it looks to see if this message is of a sort
that will trigger a process. for this, a function is needed that corresponds to the message, with the right
number and the right type of arguments.

One of the axioms of Scol technology isthat it isimpossible to be sure of the correspondent’ s integrity. In
concrete terms, what this means is that if A sends B a message X supposedly to receive a response Y,
there is no guarantee that response Y will in fact be sent. The only thing A is certain of is how it processes
the messages it receives. In this sense, communication in Scol assumes a human character: when you
speak, you can never be sure that you are understood, regardless of the effort you make. It may be
objected that often machines A and B are programmed by the same person and that, in this sense, the
developer knows very well that B will respond with message Y when it receives message X. However,
even in this case, the precautionary principle should apply since you will thereby guard against:

- your own errors. In the previous example, if you programmed A and B yourself so that A sends
message X and B responds with message Y, it is quite possible that you made an error and that B
does not respond. Thisis al the more likely given that communications, being side effects, cannot be
verified statically.

- acts of malice. One or other of the correspondents A or B may have been modified with an intent to
cause damage. In this case, A may receive amessage Y in "response” to a message X that it has not
sent. Similarly, B may receive amessage X at atime other than that anticipated by the developer.

To create a network application, it is agood ideato apply the following methodology:

1. Do a communications diagram, i.e. write a list of the messages exchanged between correspondents.
Specify the function, number and type of arguments. Your diagram should clearly show the dialog
between machines, rather like the script for aplay.

2. Specify how the machine should behave when it receives a message. Your specification should not
presuppose the time at which the message is received: it should cover every eventudity, even if this
seems unnecessary, for the simple reason that a message may arrive at any time, either because of a
malfunction or through a malicious act.

63

Quite often, this behavior will specify that one or more messages be sent which might wrongly be
considered as a response.

3. Writedown alist of def com

4. Write down the functions in Scol which code this behavior. The situation is reversed in some way by
appearing to consider the Scol program as a side effect of the message received.

In the log file, you can review all the messages received, preceded by the word "exec". When an error
occurs, the file indicates that the message cannot be interpreted either because it does not correspond to
any function, or because the number or the type of arguments is incorrect. In this case, the message is
simply ignored.

V. File management

The Scol machine has limited access to the files on your computer. Access is established by defining one
or more directories known as Scol partitions. The Scol machine can only access files located in one of
these directories or in one of their subdirectories. At a given moment, only one of the Scol partitions will
be accessible in write mode.

1. Scol partitions

A Scol partition is simply adirectory of the disk to which the Scol machine has access. It may also access
all of its subdirectories.

Several partitions may be defined. Y ou are recommended to define at least 2, as the first one has a special
role. These are usually as follows:

- The first partition is the cache partition: when a user visits a site, this is the partition in which the files
downloaded from this site will be stored. A quota may be defined for this partition: the system will check
that the number of files present in this partition does not exceed the quota.

- The second partition is your working partition: this is the partition in which your tools and your own
creations are located. Y our tools may write in this partition.

- The subseguent partitions are additional caches.

Scol partitions operate along the following principles:

- When the machine searches for afile, it searches in the first partition, then in the second, then in the
third. The search stops when the file is found. A file can thus hide another file with the same name and
located in alater partition.

- When the machine writes afile, it writesit in the first partition.

- When you start the machine, the first partition is ignored: the cache partition is deactivated. This means
that the file search starts at the second partition and that a file is systematically written in the second
partition.

- You can activate the cache partition at any time: from this moment on, the file search starts at the first
partition, and afileis systematically written in the first partition.

- Y ou cannot deactivate the cache partition once it has been activated.

Thus the underlying security mechanism is clear: each time a user connects to a site, the cache partition
will be activated: al files will be written in this partition. As this operation cannot be reversed, the site
cannot deactivate the cache partition and write in the other partitions.

Partitions on the Scol machine are aso defined in the usm.ini file located in the Scol directory (usually
C:/Program Files/Scol). Thisis atext file in which the lines beginning with ‘disk’ each define a partition:
a path, which may be followed by a decimal number indicating the quota. As we have just seen, the order
isimportant: the first partition defined will be the cache partition.

65

sample extract fromusmini file

di sk ./ Cache 32768
disk ./Partition O
di sk c:/cdrom

The figure O opposite the / partiti on/ partition indicates that the working partition is accessible in
write mode.

The function used to activate the cacheis:

_cacheActivate : fun [] |

You can modify the path of a partition dynamically. This can only be done in a highly specific way, by
extending the partition path. For example, if the partition was C:\Scol\A, you can change it to
C:\Scol\A\l, but you cannot obtain C:\Scol\B. You use the _r ef i ne function, which just extends the
path of the first partition (possibly by adding the missing ‘/*). This suffix must not contain some character
sequences (.., ~' I, .L).

_refine : fun [§] S

This function is useful for managing a multi-user system. Several Scol machines can thus operate
simultaneously in different partitions by being connected to the same Scol Engine (see the Scol Engine
section further on). The Scol Engine starts the users' machines smply by inserting at the beginning of the
start-up script for these machines a _r ef i ne function with the subdirectory dedicated to the user as an
argument.

2. File types

SCOL providestwo file types: normal files and signed files.

2.1 Normal files

In this mode, the user gives the file name without restriction. In read mode the file is searched in the
different partitions, while in write mode the file is placed in the partition which is accessible in write
mode (cache partition or working partition). This mode provides a low level of security: a file is
accessible in read and write modes as soon as its name is known. Characters that may be used to write a
file name are: alphanumeric characters, period, underscore, space, tilde, dash and slash. For security
reasons, the system has the following restrictions:

66

two consecutive periods are not allowed
two consecutive slashes are not allowed
the name should not begin with a slash
the name should not begin with atilde
atilde should not follow aslash

2.2 Signed files

2.2.1 Hash function signature

In this mode, the user gives a clear text file name, as defined above, to which the system appends a
cryptographic-type signature on the file's contents. This signature starts with a specia character that
determines the type of signature (in the first signature implemented, the '# character), then continues and
ends with a succession of aphanumeric characters.

It is therefore virtually impossible to guess the name of any file if its contents are unknown. Furthermore,
the contents of afile of this type cannot be modified: any modification results in a change of signature,
and hence a change of name. Signed files thus provide ahigh level of security.

Another useful feature of the signature is that it quickly and accurately determines whether a file has
aready been loaded; usually, when users contact a Scol server, they are given alist of the packages they
will need. By using the signature, users can find the exact packages they already have in their partitions.
In particular, this automatically solves the problem of updating.

2.2.2 Cookie signature

You can sign afile with any word: it will be separated from the clear text file name by the *;’ character.
This word will be called the ‘ cookie’ word. A Scol machine can define a‘ cookie’ word once by using the
following function:

_setCookies : fun [S] S

Given that you cannot redefine a ‘cookie’ word, this function is used to protect certain files. Usualy, a
machine used in standard client mode will use the server’s IP address as the cookie word, even before it
compiles the packets indicated by the server. Files signed with this cookie will be inaccessible to clients
of other servers.

For security reasons, when a Scol machine which has activated its cache starts another Scol machine, this
new machine:

- automatically activates its cache itself on start-up

- definesthe cookie®

67

3. File management API

The P type has been created to use files (P is for Path). It remains globally invisible to the user. For
special operations in write mode, the Wtype is introduced.

To read a file you need to know its name relative to the Scol partitions (S-type character string). The
_checkpack function is used to search for this file in the different partitions and to return a P-type
object which actually contains the exact path of the file. You can then use this P-type object for read
operations. The only exception is the _| oad function, which is used to compile a package; it performs
both operations itself (looks for the file and reads).

To write a file, you need to know its name (S-type character string). If you already have the contents of
the file to be written (in a character string), you use the _st or epack function. If you want to write the
file in several stages (streaming), you use the _get nodi f ypack function to obtain a Wtype object
which will be used by the _cr eat epack and _appendpack functions.

In Scol there is no means of knowing the complete path of a file; indeed, this would pose a security
problem.

_checkpack : fun [S] P
Searches for a package in the partitions from the complete name (file name in clear text followed possibly
by a signature). Returns nil if not found.

_getpack : fun [P] S
Loads a file in a character string. To obtain the file path, you first need to have caculated a
_checkpack. If the path is nil, the result is also nil.

_PtoScol : fun [P] S
Returns the complete Scol name (relative to the partition) of a file: this operation is the opposite of
_checkpack. Returnsni | if thefileisnot in one of the partitions.

_GetFileNanmeFronP : fun [P] S
Returns the file name only, without the path.

_GetFil eNameFromW: fun [W S
Returns the file name only, without the path.

_storepack : fun [S §] |

Saves the first argument with the second as a name. When this name has a signature, the signature is
checked. The result is 0 if successful. The subdirectories contained in the name are automatically created
if necessary.

68

_getnodi fypack : fun [S] W
Resembles the _checkpack function. However, it prepares for write mode with the following two
functions. In particular, the file to be created or modified cannot be signed by its contents.

_createpack : fun [S W |
Opensthe W filein write mode, by reinitializing it and writing the S string.
Returns O if successful, -1 in the event of an error.

_appendpack : fun [S W |
Opensthe W filein write mode and adds the S string at the end of the file.
Returns O if successful, -1 in the event of an error.

_WoP : fun [W P
Converts W type to P type. The opposite is not possible, for security reasons.

_load : fun [S] |

This function has already been described. It loads and compiles a file containing the Scol code. In fact,
the file is searched in the Scol partitions of the machine (the _| oad function calls the _checkpack
function itself).

_getlongnanme : fun [S1 S2 S3] S

Calculates the complete name of afile:

-Slisthefileto be saved

-S2 isthefile name in clear text

-S3 codes the type of signature by taking up the specific character
-"": no sighature

-"#": first type of signature by contents

-";": cookie-type signature

This function returns the complete name (name in clear text possibly followed by the signature).
This function has aready been described in the standard library relating to character strings.

/* Exanple of handling files */
/* reads a file foo.pkg and recopies it under the nane
" bar #si gnature',

checking the result at each stage */

fun main()=

| et _checkpack "foo.pkg" -> path
inif path==nil then -1

else let _getpack path ->n
inif n==nil then -1

69

el se let _getlongnane n "bar" "#" -> n2
inif n2==nil then -1
el se _storepack n n2;;

_listoffiles : fun [S] [S rl1]
Returnsthe list of files present in adirectory. The files are returned with their complete name. This
functionisonly accessible if the machine has not yet activated its cache.

_listofsubdir : fun [S] [S r1]
Returns the list of subdirectoriesin adirectory. Subdirectories are returned with their complete name.
Thisfunction isonly accessible if the machine has not yet activated its cache.

4. Advanced file-reading functions

It is useful to have more refined functions for reading files. For this purpose, a Fi | e type is defined
which corresponds to an open file in read mode. This object is obtained using the _FI LEOpen function
from a P-type object. This object is also associated with a channel: it will be automatically destroyed
when the channel is destroyed.

File _FILEOpen (channel Chn, file P)
Opens afilein read mode. Returns nil in the event of an error.

I FILEC ose (file File)
Closes afile.

I _FILESeek (file File, position I, node I)
Positions the start of the read.

| _FILETell (file File)
Returns the start of the read position.

I FILESi ze (file File)
Returnsthefile size.

S FILERead (file File, size I)
Reads a number of charactersin the file, from the current position.

5. File selection interface

You can cal the file selection graphic interface in read mode or in write mode. Refer to the reference
manual for details.

70

VI. Event-driven and graphic interface programming

Here we shall describe the basic principles of event-driven and graphic programming:

- event-driven programming: how to manage the events that the Scol machine receives (timers, human-
machine interface, etc.)

- graphic programming: creating graphic and, more generally, multimedia objects

We shall use two examples to illustrate these principles: windows and (a non-graphic example) timers.
The Scol graphic interface is the machine's largest API. It is used to manage windows, text zones,

buttons, lists, menus, character fonts, bitmaps, etc. It is described in detail in the reference manual.

1. Basic principles

1.1 Proprietary channel

We refer to an object to designate any resource (graphic or otherwise) "external" to the Scol language:
window, button, bitmap, timer, etc.

In Scol, a channel, said to be proprietary, corresponds to each object. Thus, when you create an object
(window, button, timer, etc.), you must specify the object’s proprietary channel. The object’s existence
is linked to the channel’s existence. The existence of the object will be associated with that of the
channel. When you close a channel, all the associated objects are quite simply destroyed.

In the File management section we saw the example of Fi | e-type files. To create such an object, we
used the _FI LEOpen function, type fun [Chn P] Fil e. Here you can see how the proprietary
channel has been specified: it is the first argument.

Similarly, the type of the CRwindow function encountered in the ‘Hello World' examplesis:
_CRwindow : fun [Chn GbjWn I | I | 1 S ObjWn

The Cbj W n type corresponds to a window object. To create a window, you thus specify the proprietary
channel, followed by the parent window, then by various arguments that define the window’s position,
size, type and title.

The role of the proprietary channel goes beyond merely destroying objects when the channel is closed. It
aso involves the management of events.

71

1.2 Managing events

Most objects are likely to receive events. For example, you can click on a window. You can move a
window. You can press a button. Each of these actions corresponds to an event which the program must
process. Similarly, the role of atimer isto initiate an event at regular intervals.

1.2.1 Different event management systems

The following question arises: how does a Scol program receive the events?
This question is posed for any operating system; however, the answers are often different.

In Windows, the program defines a function which is called each time an event is produced by the
system, whatever the event. In UNIX, with X-Window (X11), the principle is similar, but users can
choose which events their function is to receive. In both cases, the function "sorts’ the events and,
according to the type of event, processes it accordingly. In C, this function can often be summed up by a
giant ‘switch’.

With Xt Intrinsics (high-level X-Window programming model, used for example for Osf-Matif), the
developer defines one function per type of event. Such a function will only be called when a given type of
event occurs. Such a function is called a ‘reflex’ or a‘callback’. This method offers two advantages: on
the one hand, you no longer have to write the *switch’ function; on the other hand, the event’s parameters
are passed more simply. For example, three parameters characterize a click event: the coordinates of the
click and the button number. No parameters characterize a timer event. One parameter characterizes an
event such as ‘the content of atext field has changed’, i.e., the new text. Processing all these events by the
same function poses a problem in terms of passing parameters. you often (Windows, X-Windows) have to
take liberties with the typing, which is a major cause for error. The advantage of the system of reflexesis
to be able to define one reflex function type per event type. As you will no doubt have guessed, thisisthe
way in which events are managed with Scol.

1.2.2 Defining reflex functions

In Scol, you can therefore define a reflex function for each object and each type of event. This reflex
function must take at least two arguments:

- thefirst is the object affected

- the second is a given user parameter

Depending on the events, the reflex function will have additional arguments: 3 integers for a click, two
integersfor a‘resize window’ event, no additional arguments for atimer event.

72

To define areflex, function, you will use the function with the appropriate definition. For example, in the
‘hello3’ program described in the ‘Hello World’ section, you will find the following line:

_CBwi nDestroy win @end nil;
The _CBwi nDest r oy function is used to define the reflex associated with the *destroy window' event.
It takes three arguments:

- the window whose reflex you are defining (here ‘wi n’)
- the reflex function (here* @ end’)
- the user parameter (here‘ni | *)

The type of the reflex function is. fun [Gbj W n?] ?, whereby the second argument is the user
parameter. The type of the result isirrelevant. The type of the _CBwi nDest r oy function is therefore:
_CBwi nDestroy : fun [GbjWn fun [CbjWn u0] ul u0] ObjWn

Y ou will notice how the typing ensures that the user parameter supplied when the reflex is defined has the
same type as that of the reflex function (here ‘uQ’). Here, Scol holds an advantage over Xt-Intrinsics: the
user parameter in Xt-Intrinsics is not typed: it forces the developer to play around with types, which is
aways amajor cause of errors.

Other examples:
A click event on awindow requires three parameters: the coordinates of the click and the number of the
button. The associated reflex functionisof thetype:fun [CojWn uO | | 1]7?

The definition function of the click reflex functionis:
CBwinCick : fun [GjWn fun [CojWn uO | | 1] ul u0] GhjWn

AtimerisaTi mer -type object.
The reflex function associated with the timer is of thetype: fun [Ti ner u0] ?
The definition function of the timer reflex function is:

rfltimer : fun [Timer fun [Timer u0] ul uO] Tiner

If you define a reflex with nil as the second argument (instead of the reflex function), this deletes the
reflex. Similarly, you can redefine areflex at any time, including in the reflex function itself.

1.2.3 Processing an event

When an event occurs, the Scol machine searches for the object concerned by the event, then the reflex
function associated with this event. If this reflex function has been defined, the Scol machine runs this
function and forgets the result, except in certain highly specific cases where the result is interpreted by the
system. This function must be run in a channd (indeed, this function may cal the _| oad or
_cl osechannel functions). It is the proprietary channel that is selected. This explains the second
role of the proprietary channel.

73

Y ou can change an object’s proprietary channel; more exactly, you can assign al the objects of a channel
to another channel using the following function:

_chgchn : fun [Chny Chn,] Chn,

Assigns al the objects of the Chn; channel to the Chn, channel.

This function is used in particular to save a channel’s objects just before the channel is destroyed
(subsequent to the _closed event, for example).

2. Examples

2.1 Windows

Here, we will illustrate in windows the principles that have just been expounded. You will find the
complete documentation for the following functionsin the * Graphic Interface’ appendix.

oj Wn _Crwi ndow(Chn channel, ObjWn parent, | posx, | posy,
| taillew, | tailleh, I flags, S nane)
This function creates a new window.

| _DSwi ndow (CbjWn fenetre)
This function destroys a window.

ObjWn _CBM nPaint (Objwin fenetre, fun [ObjWn u0] ulfunreflex, u0 param)
Reflex of the Paint event. No specia argument.

Obj Wn _CBwinMove (ObjWn fenetre, fun [GbjWn u0 | |] ulfunreflex, u0 paran
Reflex of the Move event. Two arguments which give the new position.

QobjWn _CBwinSize (ObjWn fenetre, fun [CojWn u0 I |] ul funreflex, uO param
Reflex of the Size event. Two arguments which give the new size.

QojWn _CBwinCick (CbjwWn fenetre, fun [GbjWn u0 | | I] ul funreflex, uO param)
Reflex of the Click event. Three arguments which give the coordinates of the click and the mouse button
used.

ObjWn _CBwW nUnclick (Objwin fenetre, fun [GbjWn u0 | |] ul, funreflex, uO param
Reflex of the UnClick event. Three arguments which give the coordinates of the unclick and the mouse
button used.

Obj Wn _CBcursorMve (ObjWn fenetre, fun [GbjWn u0O | | 1] ul funreflex, u0 paran

Reflex of the CursorMove event. Three arguments which give the coordinates of the mouse and the
mouse button used.

74

Gbj Wn _CBwi nKeydown (ObjWn fenetre , fun [GojWn u0O | |] ul funreflex, u0 param
Reflex of the KeyDown event. Two arguments which give the ‘scancode’ of the key pressed and the
value of the key pressed. See the appendices for this argument’ s special values.

Obj Wn _CBwi nKeyup (ObjWn fenetre, fun [ObjWn u0 |] ulfunreflex, u0 paran
Reflex of the KeyDown event. An argument which gives the * scancode’ of the key rel eased.

Obj Wn _CBw nDestroy (ObjWn fenetre, fun [ObjWn u0] ulfunreflex, u0 param
Reflex of the Destroy event. No special argument.

Obj Wn _CBwi nFocus (ObjWn fenetre , fun [ObjWn u0] ul funreflex, u0 param)
Reflex of the Focus event. No special argument.

ObjWn _CBwW nKill Focus (ObjWn fenetre , fun [ObjWn u0] ul funreflex, uO param)
Reflex of the Kill Focus event. No special argument.

ObjWn _CBMnDCick (CbjWn fenetre,fun [CbjWn uO | | 1] ul , u0 param)
Reflex of the DoubleClick event. Three arguments which give the coordinates of the click and the mouse
button used.

ObjWn _CBwM nDropFile (ObjWn fenetre, fun [CbjWn uO | | [P r1]]ul u0)
Reflex of the DropFile event. Three arguments which give the coordinates of the click and the list of files
“deposited” in the window by the user.

2.2 Timers

Y ou can define timers, whose period is defined in milliseconds. A timer with a period of 1000 will initiate
atimer event every second. Timer objects are of ‘Ti mer’ type. Three functions are used to manage the
timers:

_starttiner : fun [Chn I] Tiner
Creates a timer by defining the proprietary channel with a certain period expressed in milliseconds.
Returns the timer object ‘ni | * in the event of an error.

_deltimer : fun [Tiner] |
Destroys the timer passed as an argument.

_rfltimer : fun [Timer fun [Tinmer u0] ul uO] Tiner
Defines the reflex function associated with the timer.

75

VII. 3D programming

The Scol machine contains a library that is capable of processing and displaying 3-dimensional scenes.
This library is caled a ‘3D engine'. Very simply, it is used to add 3D functionalities to your programs.
One of the key features of the Scol language is its skillful combination of Internet communication
capacities with powerful 3D functionalities.

Scol’s 3D engine was carefully developed for on-line use: the scene description files are not large and
scenes are rendered fluidly on less powerful machines. Indeed, it is worth pointing out that many Internet
users, unlike the users of video-games, don’t have up-to-the-minute machines. Similarly, it is impossible
to force users on the Internet to acquire a 3D card, or even to be sure that they have the latest driver for
their card.

To be able to understand this chapter, you should already have some familiarity with the concepts linked
to 3D (scenes, polygons, materials, textures, rendering, etc.), even though most of these terms will be
explained again. Moreover, to fully understand the examples, you should have at least read through the
Scol documentation concerning graphic interfaces: to display a 3D image, you need to create a window
and a surface object and then copy the surface object into the window. Three functions will be sufficient
in thefirst instance.

The chapter will be divided into four sections. In the first section, we shall review basic 3D concepts. In
the second section, scene definition files will be discussed. In the third section, we shall describe the
manipulation and rendering functions. In the fourth section, we shall address the tricky issue of collisions.

1. Basic 3D concepts

1.1 Scene

The scene is the fundamental concept of 3D. A sceneis a group of elements such as 3D objects, cameras
or collision objects. This group is not organized in a random fashion: it fact, it is arranged as a tree
structure. Each node of the tree is a 3D object, a camera, or a collision object. The node which has no
parent is called the tree’s root. The concepts of parent node, child node and sibling node are logically
defined.

Geometrically speaking, each node defines a location. The location of the root will be called the global
location. A location is characterized in relation to the parent node’ s location by position and orientation
coor dinates, and by a scale parameter.

3D objects here will be groups of polygons. The polygons will either be triangles or convex
quadrilaterals. For example, a cube will be formed of 6 polygons: a square for each face of the cube. On

76

each polygon (or face), you will be able to apply either a uniform color to the face or a texture, i.e.,, an
image. 3D objects will be called ‘mesh’.

There is a special case of 3D object: the empty 3D object, which does not contain any polygons. This
object will be caled ‘shell’. Thus a ‘shell’ is used to define an empty location to which you can link
different elements. By moving this ‘shell’, you will move all the attached elements.

Cameras resemble real cameras: in particular, afocal length is defined. Cameras will be called ‘camera’.

Collision objects are groups of spheres, rectangular parallelepipeds, or triangles which define space-filled
zones. These modules will be called ‘coll’.

The main purpose of the 3D engine is to calculate the image that a particular camera “sees’. To do this,
you need to specify a camera and a surface in which the image will be calculated. The scene thus taken
into account will be the scene to which the camera belongs.

1.2 Session

The 3D engine is used to manage several scenes simultaneously. Indeed, the concept of the scene is
replaced by the concept of the session. A 3D session is agroup of elements such as those described above
(mesh, shell, camera, coll). Each element possibly has a parent; there are as many scenes as there are
orphan elements.

1.3 Material

A material isan element that determines the appearance of a polygon.

A material can be ‘flat’; this means that a uniform color is applied to the face. This color can vary
according to the lighting, i.e., according to the face's orientation with respect to the light source. This
color can aso be translucent: it acts as a color filter. The strength of the filter varies between total
transparency and complete opacity.

A materia can be ‘textured’: this means that an image is applied to the face. This image can be a
drawing or a photo. The material can be transparent: this means that the dots in a color (which the user
can determine) will be considered to be transparent. You can assign a transparency coefficient to the
others.

On a textured material, you can apply various colorimetric filters: filters towards a color, color rotation,
changein saturation, etc.

7

The materias are elements of the session. They are not geometric elements: thus they are not attached to
locations and, of course, they have no parent.

1.4 Performance

It is aways difficult to be precise about levels of performance, but we can give the general principles that
are used to optimize scenes.

1.4.1 Speed of execution

Speed of execution primarily concerns speed of rendering. Other operations (movement, rotation, etc.) are
very fast.

- The fewer the polygons, the faster the rendering (avoid exceeding 15,000).

- At a constant number of polygons, rendering is faster if there are lots of meshesin the scene.

- Flat material is much faster than textured material.

- Transparency (both for flat and textured) is particularly memory-hungry, especially when transparent
faces are superimposed.

1.4.2 Space in memory

The space used in your computer’s memory is an important parameter: if the scene is too large, your
computer will have insufficient memory and will use swap mechanisms, which are time-hungry. It is
important to distinguish between the size of your 3D files and the space used to store them in the
memory. For example, a file containing a jpeg-format image with a resolution of 256x256 can have a size
of 6 Kb (if it is sufficiently compressed), but will still take up 128 Kb of memory. This latter figure is the
important one and is obtained as follows: 256x256x2, since two bytes are needed to store the color of a
dot.

The size taken up by information other than textures is negligible: 2 Mb will normally be used to manage
scenes of 15,000 polygons.

Above 10 Mb of textures, your scene will have difficulty rotating on a computer that has 32 Mb of
random access memory. Therefore, use your judgement.

1.5 Scol 3D engine characteristics

78

1.5.1 Memory management

The engine uses a dedicated memory strip to store all its data, except for textures. This memory strip is
also used to generate rendering.

The engine manages a list of materials and a list of textures. Cleaning up is done automatically by means
of a“reference counter”-type GC (Garbage Collector).

Memory management is automatic for the following:
- When amateria is no longer referenced by an object, it is deleted.
- When atextureis no longer referenced by a material, it is deleted.

In this way, you cannot copy a material without specifying at least one object that uses the copy.
Similarly, you cannot copy atexture without specifying at least one material that uses the copy.

Thus there are three types of datain the memory strip:

- The objects which reference any number of materials (at |east one per polygon).

- Thematerials which reference at least one texture.

- The textures which are either loaded (the texture's image is in the memory) or not loaded (the
texture's image is not yet in the memory). In the latter case, the materials which reference these
textures are automatically rendered asflat.

1.5.2 Scene

The objectsin the scene are organized as tree structures. The objects are of four types:
. “shell” type: empty object

. “mesh” type: group of points and polygons

. “camera’ type: visualization camera

. “coll” type: collision object

The move, create and delete functions are applied to objects in general, without distinguishing type,
which simplifiesthe API.

1.5.3 Materials

There are two general types of material: textured materials and untextured materials. Every material has
an untextured mode. Y ou can load textures at any time.

Rendering is in 15 bits unpaletted. Textures are in paletted 8-bit bmp format (no longer recommended as

it is cumbersome to download and of mediocre quality) or in jpeg format. You are advised to use jpeg
only, since this format offers the best performance in terms of compression.

79

Textured materials have a transparent mode. For textures in bmp format, the color O is the transparency
color. For textures in jpeg format, the transparency color can be specified.

Texturing can be donein ‘environmental mapping’.

Different filters can be applied:

- Color filter: calculates for each dot the barycenter between the dot’s color and the filter's color. The
barycenter coefficient is variable.

- Attractor filter: a dot whose color is located at a distance from the color filter below a specific value is
forced to the color of the filter.

- Saturation filter: calculates for each dot the barycenter between the dot’s saturation and the filter's
saturation. The barycenter coefficient isvariable.

- Rotation filter: causes a color’ s shade to be turned from a specific angle.

Materials can use a level of transparency that varies between 0 (opaque) and 255 (transparent). With the
softwar e engine, textured materials can have only two levels of transparency:

- from0to 127: opaque

- from 128 to 255: 50% transparency

Gouraud shading is available in software mode and hardware mode.

2. 3D file format

In order to define a scene, you need to define different elements. meshes, camera, collision objects,
materias, etc. It is convenient to have afile format that can be used to describe a scene or part of a scene
simply and comprehensively. We will see that the 3D engine possesses manipulation functions that can
subsequently be used to modify virtually any characteristic defined by the scene files. The format of Scol
3D filesiscaled M3D.

The M3D format is used to describe hierarchically-arranged scenes containing materials, meshes,
cameras, and other files to be included. An M3D file is atext file which can be opened using any editor.
Thefile'sbasic element isthe line. The fileis divided into blocks of types:

type_of el enent name_of el enent {
... (contents)
}

The type of element is: material, mesh, shell, camera, coall.
Blocks can be nested (except for ‘material’ blocks) :
shell x {

(contents)
mesh y {
... (contents)
}

mesh z {
80

(contents)

canera w {

}
}
}
N

(contents)

esting is used to account for a scene' s tree structure.

Material blocks are in the form:
material nane_of _material {
col or 123456

texture nane_of texture.jpg
type NOLI GHT

t ype TRANSPARENCY120

}

No line here is indispensable. However, it goes without saying that the minimum you must define is a flat
color (‘col or’ line) or atexturefile ('t ext ur e’ line).

The color is given in 6-digit hexadecimal RGB (8 bits R, 8 bits G, 8 bits B). For example, bright red is
coded ff0000.

The texture is a file name which can be preceded by a filter, placed between ‘%’ . The filter is a character
string which consists of alist of processes:

C[6 color characters][2 rating characters]: color filter (expressed as 24 bits hexa) with a rating varying
between 0 and 255 (2 characters hexa)

X: changes colors Red->Blue->Green->Red

Y : changes colors Red->Green->Blue->Red

A[6 color characters][2 distance characters]: attractor. Every dot close to the color expressed is forced
to this color. This color becomes the transparency color for jpeg textures.

R[4 rotation characters]: shade rotation (Hsv model). The angle is between 0 and 65535.

S[4 value characters|[2 rate characters]: saturation filter. The restricted saturation value is given on 4
bytes and is between 0 and 65536. The rating varies between 0 and 255.

Example : %6Cd0000080X %toto.jpg
In this example, ared filter at 50% followed by a color rotation X will be applied to the texture toto.jpg.

The lines of types are: NOLIGHT, TRANSPARENCY 120. You can put in as many type lines as you
wish. The coefficient which follows the word TRANSPARENCY is between 0 (opaque) and 255
(transparent). It isonly useful during an untextured rendering.

The mesh blocks are in the form:
mesh nane_of _nesh {
Xy z ab c scale

81

vertices

[light I]

pol ygons

[recursion]

}

The mesh’s position is given by the coordinates x, y, z and the angles a, b, ¢ (between 0 and 65535). The
scale parameter is optional. It is expressed as a percentage: 100 represents the normal scale, 200 for
double-size, 50 for half-size, etc.

The vertices are lines of three coordinates x, y, z, which are whole or floating integers.

Light | isoptiona and should be between 0 (very dark) and 31 (value used by default).

The polygons are described in the form of blocks comprising:

. aline giving the name of the material to be applied to the polygons to follow

. lines of polygons comprising 3, 4, 6, 8, 9 or 12 integers, according to whether you define 3 or 4 apices,
with O, 1 or 2 texture coordinates.

Following the polygons are the means to insert other meshes, cameras..

The camera blocks are in the form:

canera nanme_of _canera {

Xy z abc scale

distx disty sx sy

zclip zfog zback

}

The camera’s position is given by the coordinates x, y, z and angles a, b, ¢ (between 0 and 65535). The
scale parameter is optional.

The di st x and di sty parameters give the distance from the screen on the x-axis and on the y-axis
(used in the projection formulas X=di st x*x/ z et Y=di st y*y/ z).

Thesx and sy parameters give the screen’ s half-width and half-height.

Shell refers to an empty object (neither camera nor mesh) which is used only for attaching other objects to
it. The syntax of a Shell object is asfollows:

shel | nane_of shell {
Xy z abc scale

}

Following the shell coordinates are the means to insert other meshes, cameras or to include files.

The # character indicates that what follows the line is a comment.

Example:
cube

82

mat eri al wood {
col or c04000
texture wood. j pg

}

material stone {
col or 00c040
texture stone.jpg
t ype TRANSPARENCY

}
mesh cube {
000 O0O0O

-100 -100 -100
100 -100 -100

100 100 -100

-100 100 -100

-100 -100 100

100 -100 100

100 100 100

-100 100 100

light 10

wood

000 12550 2 255 255 3 0 255
100 52550 6 255 255 2 0 255
500 42550 7 255 255 6 0 255

st one

4 00 02553 3255 255 7 0 255
300 22550 6 255 255 7 0 255
100 02550 4 255 255 5 0 255

In this example, we have defined a cube with an edge of 200. There are three faces which use the material
‘wood’ and three faces which use the material ‘stone’.

3. 3D manipulation API

The basic example includes the following points:
- creating a bitmap in which rendering will be performed
- creating a session

83

- reading an M 3D file containing a cube and a camera
- calculating rendering
- displaying the bitmap in awindow.

We will use threefilesto do this:
file ‘ Tutorial/mytest3d.scol’

_load "Tutorial/nytest3d. pkg
mai n

file ‘ Tutorial/mytest3d.pkg’

[* MyTest 3d */

typeof w n=Cbj Wn; ;

t ypeof buffer=0bj Surface;;
t ypeof session=S3d; ;
typeof shel | =H3d; ;

typeof canera=H3d; ;

fun _end(a, b)=_cl osenachi ne; ;
fun _paint(a,b)=_BLTsurface win O O buffer 0 0 400 300;;

fun main()=
set wi n=_CRwi ndow _channel nil 150 150 400 300
VWN_MENU| WN_M NBOX "My 3d Test";
_CBwi nDestroy win @end nil;
_CBwi nPaint win @paint nil;
set buffer=_CRsurface _channel 400 300;
set session = MX3create _channel 1024 1024 1024 1024 1024*1024;
if session==nil then _closenmachine
el se
(set shell = McreateShell session;
MBl oad session "Tutorial/scene. nBd" shell;
set canera=M3get Cbj session "canera";
MBrecur sFi |l | Mat Obj session shell;
MX3r ender session buffer canmera 0 0 O;
_paint nil nil;
0);;

file ' Tutorial/scene.m3d’
cube

mat eri al wood {

col or ¢c04000

texture Tutorial/wood. |pg

}

material stone {
col or 00c040
texture Tutorial/stone.jpg

}
mesh cube {
000 O0O0O

-100 -100 -100
100 -100 -100

100 100 -100

-100 100 -100

-100 -100 100

100 -100 100

100 100 100

-100 100 100

wood

000 12550 2 255 255 3 0 255
100 52550 6 255 255 2 0 255
500 42550 7 255 255 6 0 255

st one

4 00 02553 3255 255 7 0 255
300 22550 6 255 255 7 0 255
100 02550 4 255 255 5 0 255

canera canera {

200 300 -400 7000 -5000 O
200 200 200 150

10 10000 10000

}

}

If you try the example, you will obtain a window containing a cube seen three-quarters on. The faces are
colored. To obtain textures, you must create two graphic files, ‘Tutoria/stonejpg and
‘Tutorial/wood.jpg’. You can aso rename these files at the start of the Tutorial/scene.m3d file and replace
them with jpeg files.

In the example, we notice a few new functions whose name begins with ‘M3’ or ‘MX3’: these are Scol 3D
engine API functions. Below we outline these functions before moving on to give an exhaustive list.

set session = MX3create _channel 1024 1024 1024 1024 1024*1024;
Creates a 3D session whose size in the memory strip is 1 Mb. The session variable has the type * S3d'.

85

(set shell = McreateShell session;
Creates a shell element in the session. The shell variable hasthe type ‘H3d'.
MBl oad session "Tutorial/scene.nBd" shell;
Reads the Tutorial/scene.m3d file and puts its entire contents under the shell element.
set canera=Mget Cbj session "canera";
Finds the trace of the object called ‘ camera’ in the scene. The camera variable has the type ‘H3d'.
M3recur sFi | | Mat Gbj session shell;
Loads all the scen€e’s textures, or, more exactly, the textures used by the objects located under the shell
object.
MX3r ender session buffer camera 0 0 O;
Calculates rendering of what the camera‘sees’ in the buffer.

Note: functions that start with MX3 have been introduced to support 3D cards and pass in software mode
if thereis no 3D card. Thus the older functions M3create and M 3scanline are now obsolete.

3.1. New types

We define the following magma types:

S3d 3D session

H3d 3D obj ect handl er
Hmat 3d mat eri al handl er
Ht x3d t exture handl er

Generaly speaking, the functions return O if successful.

3.2. Session

S3d MX3create(channel Chn, nbmat |, nbtext |, nbobj |, ntaby I,
si zetape 1)

Initializes a 3D session by specifying the maximum number of materials, textures, objects and lines of
rendering and the size of the memory strip to be allocated for storing the meshes and calculating
rendering.

| MBdestroy(session H3d)
Destroys the 3D session.

I MBfreeMenory (session S3d)
Returns the amount of memory still free in the session. Performs a GC.

I MBreset (session S3d)

86

Deletes all the objects and textures in the session.

3.3. General object management

I M3l oad(session S3d, file S, parent H3d)
Loads afilein M3D format by specifying the parent handler (nil if none). If the parent is specified, the
file elements will be considered asits child elements.

I MBIl oadString(session S3d, contents S, parent H3d)
L oads an object from a character string in M3D format by specifying the parent handler (nil if none).

H3d M3createShel | (sessi on S3d, parent H3d)
Creates a Shell-type object and returns its handler (nil in the event of failure).

I M3del Obj (session S3d, object H3d)
Destroys an object by knowing its handler.

H3d M3copyhj (sessi on S3d, object H3d)
Creates a copy of the object. This copy is not attached to any tree structure.

H3d M3get Obj (session S3d, nane S)
Gives an object handler depending on its name; nil if it cannot be found.

S M3obj Nane(sessi on S3d, object H3d)
Returns the object’ s name.

H3d M3get Fat her (sessi on S3d, object H3d)
Returns the handler of an object’ s parent.

H3d M3get Fi r st Son(sessi on S3d, object H3d)
Returns the handler of an object’sfirst child.

H3d M3get Brot her (sessi on S3d, object H3d)
Returns the handler of an object’ s sibling.

H3d MBbi gFat her (sessi on S3d, object H3d)
Returns the handler of the apex of the tree to which an object belongs.

H3d MBi sFat her (sessi on S3d, child H3d, parent H3d)
Returns 1 if parent iswell above child in the tree structure.

I MBunLi nk(session S3d, parent H3d)
87

Detaches an object (and all its descendants). The object remains in the memory.

I M3link(session S3d, child H3d, parent H3d)
Attaches one object beneath another.

I MBrenaneObj (session S3d, object H3d, name S)
Changes an object’ s name (must be less than 32 characters).

| M3set Obj Vec(session S3d, object H3d ,vector [I | I])
Defines an object’ s position in the location of its parent.

[1 1 17 Mget Obj Vec(sessi on S3d, object H3d)
Reads an object’s position in the location of its parent.

| M3set Obj Ang(session S3d, object H3d, angular [I | 1])
Defines an object’ s angular position.

[1 1 1] Mget Obj Ang(sessi on S3d, object H3d)
Reads an object’ s angular position.

I MBset Obj Scal e(session S3d, object H3d, scale I)
Defines an object’ s scale, expressed as a percentage: 100 for normal size, 200 for double-size, etc.

| MBget Obj Scal e(session S3d, object H3d)
Reads an object’s scale, expressed as a percentage: 100 for normal size, 200 for double-size, etc.

I M3nov(Qbj (session S3d, object H3d, vector [I | 1])
Moves an object from a vector in the object’s frame of reference. For a camera, the vision axis is z, the
horizontal axisisx, and the vertical axisisy.

| Mrotatej(session S3d, object H3d, angular [I | 1])
Turns an object from an angular vector in the object’s frame of reference.

I M3nov(Cbj Ext (session S3d, object H3d, vector [I | I])
Moves an object from a vector in the frame of reference of the object’ s parent.

| M3rotatebj Ext (session S3d, object H3d, angular [I | I])
Turns an object from an angular vector in the frame of reference of the object’ s parent.

| MBcal civat (sessi on S3d, object H3d);
Calculates the positions of objects in a scene in the object’s location. You can retrieve these positions
with the following two functions.

[1 1 17 Mget Obj VecRender (sessi on S3d, object H3d)
88

Gives an object’s position after M3calcMat or M3scanline.

[gr 1] o1 1y [1]] MgetObjMatri xRender (session S3d, object
H3d)

Gives an object’s matrix after M3calcMat or M3scanline. The matrix consists of 32-bit integers, with 16
bits after the comma.

[LE 17 [1y [t 1 1]] MBgetCanera(session S3d, object H3d)
Gives acamera’ s parameters: [[dx dy] [sx sy] [zclip zmiddle zmax]]:

B dx, dy: projection distance (formula X=dx.x/z, Y =dy.y/z)

B sx, sy: screen’s half-width and half-height

W zclip, zmiddle, zmax: start of fog near clipping distance and far clipping distance.

| M3set Canera(session S3d, object H3d, paraneters [[I 1] [I 1] [I |
1)

Sets acamera’ s parameters: [[dx dy] [sx sy] [zclip zmiddle zmax]].

[H3d r1] MBLi st O Bi gFat hers (session S3d)
Returns alist of all objects without a parent, i.e., those which are at the apex of a hierarchy.

[gr vy e vy ey frro1]]] Mcal cPosRef (session S3d, object
H3d, reference H3d)

Calculates the object’s position in the location of the reference object. The matrix consists of 32-bit
integers, with 16 bits after the comma.

[1 I 1] MBangularFromvatrix (matrix [[I I 17 [0 1 17 [1 1]])
Calculates atriplet of angles corresponding to the pass matrix. The matrix consists of 32-bit integers, with
16 bits after the comma.

| MBget Radi us (session S3d, object H3d)
Reads the object’ s radius (maximum distance from the center of the object’ s location to its vertices).

[x 1y I z1 r I] McalcProj (session S3d, canera H3d, object H3d)
Calculates an object’s projection on a camera and returns, if the object is visible, the screen x and y
coordinates, the distance z and the apparent radius r. Returns nil if the object is not visible or in the event
of an error. This calculation only takes account of the z clipping (front and back). It does not take account
of lateral clippings.

[I I 1] Mangul arTarget (src_vector [I | I], dest_vector [I | 1])

Returns the angular positions that enable the source to point towards the destination. The third angle is
awaysnil.

89

| MBget Obj Type (session S3d, object H3d)
Returns the object’ s type:

- M3 SHELL

- M3_CAM

- M3 _MESH

- M3 COLL

- M3_LIGHT

[I T 1] Mgetd obal Vec (session S3d, l|location H3d, vector [I | 1])

Gives the global coordinates of a vector expressed in the location. By globa coordinates we mean
coordinates in the location situated at the apex of the tree to which the location passed as a parameter
belongs.

3.4. Managing materials

Hvat 3d MBget Mat (sessi on S3d, nane S)
Returns the handle of a material depending on its name; nil if it cannot be found.

S M3mat eri al Nanme(sessi on S3d, naterial Hwat 3d)
Returns the name of the material.

I MBrenaneMat (session S3d, material Hwat3d, nanme S)
Changes the name of amaterial.

| Mfill Mat(session S3d, material Hvat3d)
Loads, if necessary, the texture of amaterial.

I M3fill Mat Obj (session S3d, object H3d)
Triesto load all the textures that are useful to an object.

I M3recursFill Mat Obj (session S3d, object H3d)
Triesto load all the textures that are useful to an object and its descendants. If the object is the apex of the
scene, triesto load all the texturesin the scene.

I M3get Type(session S3d, nmaterial Hwat 3d)
Returns the default type of a materia (i.e., as designated by the user).
The result is acomponent of the following masks:

- MAT_TEXTURED: textured material

- MAT_TRANSP: material with transparency effect

- MAT_LIGHT: materia with lighting effect

- MAT_ENV: environmental mapping

- MAT_GOURAUD: Gouraud shading

90

| MBget Real Type(session S3d, material Hvat3d)
Returns the current type of a material (default type, may be adtered: e.g., if the map is not loaded, the
current type of amateria isforced to flat). See above for masks.

| MBset Type(session S3d, material Hwvat3d, type I)
Defines the default type of a material, taking account of constraints. See above for masks.

| MBget Material Fl at (session S3d, material Hwvat 3d)
Returns the color associated with the material.

| M3setMaterial Fl at (session S3d, material Hwat3d, color 1)
Changes the color associated with the material.

| MBget Mat eri al Transparency(sessi on S3d, material Hvat 3d)
Returns the transparency coefficient associated with the material (value between 0 and 255).

| MBset Materi al Transparency(sessi on S3d, material Hvat3d, coef 1)
Changes the transparency coefficient associated with the material (value between 0 and 255). Flat
rendering only used.

I MBraterial Count (session S3d, material Hvat3d)
Returns the reference counter associated with the material.

[Hvat 3d r1] MlistOfMaterial s(session S3d, object H3d)
Returns the list of materials used by the object.

Hvat 3d MBcopyObj Material (session S3d, object H3d, material Hwvat3d)
Creates a new material as a replacement and copy of another material in an object. Returns the new
material.

I MBchgQhj Material (session S3d, object H3d, current_material Hwat3d,

new_mat eri al Hvat 3d)
Replaces a material with another one in a specified object.

3.5. Managing textures

HTx3d M3get Text ure(session S3d, nane S)
Returns the handle of atexture depending on its name; nil if it cannot be found.

S M3t ext ureNane(sessi on S3d, texture HTx3d)
Returns the texture' s name.

91

I MBrenaneTexture(session S3d, texture HIx3d, name S)
Changes a texture' s name.

HTx3d M3t extureFronvaterial (session S3d, material Hvat3d)
Returns the texture associated with the material.

I MtextureCount (session S3d, texture HTx3d)
Returns the reference counter associated with the texture.

I M3shift TextureXY(session S3d, object H3d, material Hvat3d, x I, y I)
Shifts the mapping coordinates of the polygons of the object using a particular material.

HTx3d M3copyMateri al Texture (session S3d, material Hvat3d)
Creates a hew texture as a replacement and copy of another texture in a particular material. Returns the
new texture.

I MchgMaterial Texture (session S3d, material HWat3d, new_texture
HTx3d)
Replaces the texture of amaterial with another texture.

I MBisTextureFilled (session S3d, texture HIx3d)
Returns 1 if atexture's bitmap isloaded, O if not.

I MBfill Texture (session S3d, texture HTx3d)
L oads a texture’ s bitmap.

I M3freeTexture (session S3d, texture HIx3d)
Frees atexture' s bitmap.

3.6. Managing rendering and link with 2D interface

H3d MX3render(session S3d, buffer ObjSurface, objet H3d, xplot 1,
yplot I, col 1)

Calculates rendering of a scene from the ‘object’ handler camera in a rendering buffer. Y ou specify the
background color col (nil for transparent). The function returns the handler of the object located at the
point of the (xplot,yplot) coordinates, nil if none. NB: the camera’s rendering size should not exceed the
buffer bitmap size. A camera s rendering size is double the camera’s half-heights and half-widths. Use
M 3setCamerato modify these values.

[H3d Hwat 3d] MX3rendern(session S3d, buffer ObjSurface, object H3d,
xplot I, yplot I, col 1)

92

Calculates rendering of a scene from the ic handler camera in a rendering buffer. You specify the
background color col (nil for transparent). The function returns the handler and the material of the object
located at the point of the (xplot,yplot) coordinates, nil if none.

[H3d Hwvat3d | | 1] MX3renderlnfo(session S3d, object H3d, xplot 1,
yplot 1)

Returns information on the (xplot, yplot) point in the following order:

B 3D handler

B materia handler

B texture u coordinate

B texturev coordinate
Rendering is not performed.

I M3blitTexture (session S3d, texture HIx3d, buffer Obj Bitmap8)
Replaces the contents of a texture with another (in 8 bits) by erasing the palette.

I M3blitTexturel6 (session S3d, texture HIx3d, buffer ObjBitmap)
Replaces the contents of atexture with another (in 16 bits) by erasing the palette.

ObjBitmap MBfilter (buffer CbjBitmap, filter S)
Applies afilter to abitmap. Thisfilter isidentical to the one used in loading textures.
Example: red filter 1/8: Cff000020

4. Managing collisions

4.1 Principles

1.a Collision elements

The 3D engine of the Scol machine contains a collision management system. This system is based on
collision elements, which the user can define in a number of ways. spheres, boxes, or polygons. Boxes
will in fact be OBB (Oriented Bounding Boxes): an OBB is any rectangular parallelepiped. Its axes are
not necessarily the scene’ s axes.

These collision elements have no direct relation with the scene's mesh elements. In fact, it is important to
be able to define invisible collision elements (e.g. invisible walls at the edge of a link in empty space to
prevent users from falling into the void) as well as mesh elements which will not be taken into account in
calculating collisions, either because the user has to be able to pass through these elements, or in the
interests of optimization (perhaps users cannot be located near the element in any way, or you may want
to replace complicated geometry with asimple, all-encompassing box).

93

An intersection and collision detection system is not only applicable to testing the position of a camerain
relation to aset. In fact, it is aso generaly applicable to the testing of two groups of collision elements.

From the collision elements, the engine is used to detect two types of event:

- intersection: do two groups of collision elements A and B intersect?

- callision in trandation: given a movement vector u and two groups of collision elements A and B, will
there be intersection between A and B when A is moved according to vector u? If so, at what moment
during the movement and according to which plane will the collision take place?

1.b Integrating collision elements into the scene

We shall distinguish between primary collision elements and secondary collision elements.

A primary collision element is the basic collision element: these are the spheres, boxes, and polygons
considered as the scene's solid elements, with which you carry out intersection and collision tests.

Some primary collision elements can be grouped in binary tree structures (each node has at most two
child elements). In fact, the primary collision elements are located in the leaves of a tree. The nodes
which are not leaves are secondary collision elements. They are of the same kind (sphere, box, or
polygon), but they are not real collision elements. they incorporate primary collision elements and are
used to optimize calculation. The algorithm (of intersection or collision) is derived from the principle that
if there is intersection or collison with the parent, then there can be intersection or collision with the
child. Conversely, if there is no intersection or collision with the parent, then there cannot be intersection
or collision with the child.

In each node of the tree we find not a (primary or secondary) collision element but a list of collision
elements of the same kind (spheres, boxes, or polygons). The algorithm moreover supposes that if a child
is of adifferent type from its parent (for example, the child is OBB type and the parent Sphere type), then
the child isan only child.

The scene’s collision elements are in fact trees of this kind, which may be reduced to a single leaf
containing a single collision element. You can thus define as many collision objects as you wish in a
scene. These objects, like others, are defined in relation to the location of their parent and may themselves
have child objects. For example, you can define an OBB-type collision object having the size of an object
(e.g. atable). The collision object will be defined as a child of the table, which simply means that the
table only has to be moved for the collision object to follow.

The intersection or collision algorithm takes at the start two of the scene's nodes; let us call them A and
B. It carries out its calculation taking into account all the collision objects located under A and al the
collision objects located under B. If A belongs to a descendant of B, the calculation will be performed
between the objects located under A and the objects located under B except for those located under A.
Usually, you can provide the algorithm with the object that is moving and the whole of the scene.

94

1.c Managing collisions

It is one thing to detect an intersection or a collision, and quite another to manage this kind of event, in
other words, to propose a movement, more generally a transformation, that will alow the scene to quit
this state of intersection or collision. This problem is particularly complex since it is specific to the
application and requires the selection of a“physical” model for the scene. This is not purely a geometric
problem. The 3D engine, however, provides help in resolving collisions. The M3testColl collision
function between A and B returns supplementary information connected to vector u:

- the movement that is geometrically possible: avector | .u with| between 0 and 1.

- the callision axis v, such that u+v is a vector that transports object A to a guard distance from B in such
away as to cause A to dslide along B. In doing so, A may enter into collision with another object C, or
even with another part of B.

4.2 API

H3d M3creat eSphere(session S3d, radius 1)
Creates a collision node containing a sphere whose radiusis given as a parameter.

H3d MBcreat eCbb(session S3d, sizes [I | 1])
Creates a collision node containing a sphere and an OBB (the OBB being the child of the sphere). The
sizes are the half-sizes of the OBB.

[[F 1 1T [1 1]] M3cal cObb (session S3d, object H3d)
Calculates the position and sizes of the OBB covering an object.

I MBfirstRadi us (session S3d, object H3d)
If the object is a collision node whose apex is a sphere, this function returnsits radius.

[H3d H3d] MBtestlnter (session S3d, objectA H3d, objectB H3d)

Intersection test between subtrees A and B. If A (resp. B) is asubtree of B (resp. A), thetest is carried out
between subtree A (resp. B) and subtree B (resp. A) without subtree A (resp. B). Returns nil if no
intersection, otherwise returns both objects in intersection.

[H3d H3d [I I 1] [I I 1]] MBtestColl (session S3d, objectA H3d,

obj ectB H3d, vector [I | I], guard I)

Collision test between subtrees A and B. If A (resp. B) is a subtree of B (resp. A), the test is carried out
between subtree A (resp. B) and subtree B (resp. A) without subtree A (resp. B). The collision test is
carried out on A’s movement according to a vector passed as a parameter, and expressed in the global
location. Returns nil if no collision, otherwise returns both objects in collision and two vectors:

95

- thefirstis collinear to the movement vector and gives the movement up to the collision
- thesecondis:
- nilif A and B are already in intersection before the movement
- otherwise a perpendicular vector in the plane of collision, such that, added to the movement
vector passed as a parameter, a vector is obtained which suggests resolution of the collision.

96

VIIl. BigNum programming

1. General introduction

The BigNum library is used for handling big whole numbers (up to 128 bits).
It offers a variety of operations such as addition, subtraction, Euclidean division, multiplication,
exponentials, etc.

The library provides conversion functions between character strings and BigNums, which, among other
things, allows these numbers to be saved. The library is also used to convert a complete text to alist of
BigNums, and vice versa.

2. API

The API defines a new type: BigN
Conversion functions;

Bi gFromAsc [string S] Bi gN

This function is used to create a BigNum from a character string coded in hexadecimal.
Example:

B BigFromAsc"1"

defines the number 1

B BigFromAsc"f "

defines the number 15

Bi gToAsc : fun [nunber BigN] S
Opposite function to the previous function.

BigToString : fun [nunber BigN] S

Converts a bignum into any character string (the smallest being able to contain the number). Internal
coding has not been specified here; this function is used only for handling bignums in communications or
in files. The size of the string produced is approximately two times smaller than the BigToAsc function
ASCII string.

Bi gToStringn : fun [nunber BigN, sizel] S
Same function as above, but specifying the size of the string to be produced. If it is too short, the BigNum
integer will be truncated.

BigFronString : fun [string S] Bi gN
97

Opposite function to BigToString.

BigRand : fun [] BigN
Randomly chooses a humber of 127 bits. Randomness can be manipulated by the srand function in the
standard library.

BigPrimal : fun [i |] BigN
Randomly chooses a primary number of i bits in the form 3n+2. Randomness can be manipulated by the
srand function in the standard library.

BigAdd : fun [x BigN, y BigN BigN
Performs addition: x+y.

BigSub : fun [x BigN, y BigN BigN
Performs subtraction: x-y.

BigXor : fun [x BigN, y BigN BigN
Performs the exclusive or operation: x"y.

Bigbd : fun [x BigN, n BigN BigN
Performs the operation: x mod n

Bighiv : fun [x BigN, y BigN BigN
Performs Euclidean division: x div y

Bigvul : fun [x BigN, y BigN BigN
Performs multiplication (modulo 2*127): x*y

BigMuln : fun [x BigN, y BigN, n BigN BigN
Performs multiplication: x*y mod n

Biglnvn : fun [x BigN, n BigN BigN
Calculates the inverse (Bezout’ s theorem): 1/x mod n

Bi gExpn : fun [x BigN, y BigN, n BigN BigN
Calculates the exponential: x ¥ mod n

Bi gPgcd : fun [x BigN, y BigN BigN
Calculates the pged of x and y.

BigCnp : fun [x BigN, y BigN |
Compares unsigned integers x and y. Returns:
B Oif x=y
B 1if x>y

98

B -1if x<y

BigListFronString : fun [text S, size block |] [BigNrl]
Divides atext into alist of words each of size block bytes. Each word is then converted into a BigNum.
The function randomly completes the end of the message to attain amultiple size block size.

BigListToString : fun [liste [BigNr1l], size bloc I] S
Opposite function to the above: reconstitutes the original text, on condition that the same value of
size block is used.

3. Example

The following example shows how to code the RSA algorithm. Let us suppose that the public exponent is
3.

The three API functions are:

B RSAcreate3: calculates a public key-private key pair.

B RSAcrypt3: encrypts atext using the public key.

B RSAdecrypt: decrypts atext using the private key.

NB: check that you have the necessary legal authorization before attempting to integrate this example in
one of your applications.

/*
RSA library - jul 97 -
*/

/* functions for internal use */
fun RSAsi zebi s(n,b,i)=

if (BigCmp b n) >0 then i

el se RSAsizebis n BigAdd b b i+1;;

fun RSAsi ze(n)= RSAsi zebis n BigFromAsc "1" O0;;

fun RSAcryptone3(l,n,il)=

if I==nil then nil else

let I->[mnxt] in

(BigToStringn (BigMuln (BigMuln mmn) mn) il)::RSAcryptone3 nxt n
i1;;

fun RSAcutstring(s,i,n)=
let substr s i n->2zin

99

if strlen z then z::RSAcutstring s i+n n
el se nil;

fun RSAdecryptone(l, k,n)=
if I==nil then nil else
let I->[mnxt] in
(Bi gExpn Bi gFronfString mk n)::RSAdecryptone nxt k n;

[* APl */
/* decrypting a nmessage s with the private key n,k -> returns a string
*/
fun RSAdecrypt (s, k,n)=

let ((RSAsize n)-1)>>3 -> nhyte in

Bi gLi st ToString (RSAdecryptone (RSAcutstring s 0 nbyte+l) k n)
nbyt e; ;

/* encrypting a nessage s with the public key n -> returns a string */
fun RSAcrypt3(s,n)=

let ((RSAsize n)-1)>>3 -> nhyte in

strcatn RSAcryptone3d (BigListFronString s nbyte) n nbyte+1;

/* creating a public key-private key pair of approx i bits (between i
and i-1)
returns the pair [n k]*/
fun RSAcreate3(i)=
| et [Bi gFromAsc "1" Bi gFromAsc "3"] -> [one three] in
let [BigPrimal i>>1 BigPrimal i-(i>>1)] ->[p q] in
if ! BigCmp p q then RSAcreate3
else let BigMul p g ->nin
let Bigvul BigSub p un BigSub g un -> phi in
let Biglnvn trois phi -> k in
[n Kk];;

100

IX. SQL

1. General introduction

The SQL library is used for handling any database using the ODBC support and SQL queries. The SQL
library is not supplied in the basic Scol Engine since it requires the ODBC support, which is not found on
every machine. This library is supplied as a Scol plug-in, "scolsgl.dll", and the following line must
appear in the usm.ini file:

pl ugi n plugins/scol sql.dll SCOLI oadSQL

In order for it to operate, the database must be defined and named in the Windows configuration panel
(menu odbc32bits). The name then given to the pair (database file/associated driver) will be the
database’ s determinant, enabling Scol to accessit.

The API has 3 functions and 2 types.

2. API

The API defines a new type:
Sql DB
This type corresponds to a database connection.

Connection creation function:
Sql DB Sql Create (Channel Chn, Database nane S, Login S, Password S)

This function returns nil if the connection fails. The name of the database is that defined in the
configuration panel, menu odbc32bits. The login and password are authentication parameters used to
connect to the database. If you have not defined access rights to your database, the “admin” login and the
“ " password should work.

Disconnection function:
I Sqgl Destroy (connection Sql DB)
This function closes the connection.

Request function:

[[S r1]rl] Sql Request (connection Sql DB, SQ._request S, parameters
[Sgl Param r1])

101

The SQL request is in text format. The request’s parameters appear in the form of the *? character. The
list of parameters (the SglRequest function’s third argument) respects the order and humber of the *? in
the SQL query.

The result is a list of character strings corresponding to the list of responses to the reguest, where each
responseisalist of columns.

The parameters are passed as a list of Sql Par amtype parameters. The SglParam type is defined as
follows:

typedef Sql Param =

SQL BIGANT S| SQL_BINARY S| SQL_BIT S| SQ_CHAR S |

SQL_DATE S| SQL_DECIMAL S| SQL_DOUBLE S| SQ._FLOAT S |

SQL_INTEGER S | SQL_LONGVARBI NARY S | SQL_LONGVARCHAR S | SQ._NUMERI C
S |

SQ_REAL S| SQL_SMALLINT S| SQ_TIME S| SQ_TIMESTAMP S |
SQL_TINYINT S| SQ._VARBI NARY S | SQL_VARCHAR

3. Examples

The following example opens the “MyBase” database and performs a password search as a function of a
“Foo” login.

typeof db=Sql DB; ;

fun main()=

set db=Sql Create _channel "second" "admin" "";

Sql Request db " SELECT Password FROM Tabl e WHERE Tabl e. Logi n=7?; "
(SQ._CHAR "Fo0")::nil;

Sql Destroy db;

0;;

The following example opens the “MyBase” database and performs a login search on the basis of a
telephone number “1234”.

t ypeof db=Sql DB; ;

fun main()=

set db=Sql Create _channel "second" "admin" "";

Sql Request db " SELECT Logi n FROM Tabl e WHERE Tabl e. Tel =?; "
(SQL_NUMERI C "123")::nil;

Sql Destroy db;

102

0;;

The following example opens the “MyBase’ database and outputs the list of logins and telephone
numbers on the (_fooS strbuild) console.

t ypeof db=Sql DB; ;

fun main()=

set db=Sqgl Create _channel "second" "adm n" "";

_fooS strbuild Sgql Request db "SELECT Login, Tel FROM Table;" nil;
Sqgl Destroy db;

0;;

The following example adds a new line in the database.
typeof db=Sql DB; ;

fun main()=
set db=Sqgl Create _channel "second" "adm n" "";
Sgl Request db "I NSERT | NTO Tabl e VALUES(?,?,7?);"
(SQL_CHAR "Titi")::(SQ_CHAR "xyz")::(SQ_NUMERI C "789")::nil;
Sql Destroy db;
0;;

The following example modifies Titi’ s password.
t ypeof db=Sql DB; ;

fun main()=

set db=Sqgl Create _channel "second" "adm n" "";

Sql Request db "UPDATE Tabl e SET Passwor d=? WHERE Logi n=?;"
(SQL_CHAR "123abc"):: (SQ_CHAR "Titi")::nil;

Sql Destroy db;

0;;

103

The following example deletes Titi’ s form.
t ypeof db=Sql DB; ;

fun main()=

set db=Sql Create _channel "second" "admin" "";

Sql Request db "DELETE FROM Logi ns WHERE Logi n=?; "
(SQL_CHAR "Titi")::nil;

Sql Destroy db;

0;;

104

X. Http interfacing

The Scol machine integrates the http protocol both on the server side and on the client side. This means
that, in a few lines of Scol, you can not only create a small http server but also make http requests as a
client to any http server in the world. Similarly, two Scol machines can communicate via http, one acting
as server, the other as client. Thisis extremely useful for connecting to a Scol site when you yourself are
behind a firewall which only allows the http protocol to pass.

Below we describe both server and client aspects.

1. Http server

a. Principles

We define two types:

- HTTPserver: Http server

- HTTPcon: Http connection. When a request is received by an http server, it creates a “connection”
which enables the server program to respond to the request.

To define an http server, you need to:
- choose afree TCP/IP port
- define acallback function, which will be called every time arequest is received by the server

You call the function:
startHTTPserver : fun [Chn | fun [HTTPcon u0 S] S uQ] HTTPserver

For example:
startHT TPserver _channel 8080 @callback nil

The callback function is called when the server has received the complete request. It takes three
arguments:

- thehttp connection

- theuser parameter

- acharacter string containing the request

It must return a character string which is the response to be transmitted. This is synchronous mode: the
callback function immediately returns the response to be transmitted.

105

There is an asynchronous mode, which allows the server to postpone its response. For this the callback

function needs to return ‘nil’. The server program can then:

- send the response, packet by packet, using the HTTPsend function

- closethe connection after the last packet, using the closeHTTPcon function

- it can aso send the contents of a file, which will be transferred directly from the disk to the http
connection without passing through the Scol machine’'s memory. At the end of the transfer, the http
connection will be automatically closed. Thisis done with the HTTPsendFile function.

b. Some words of advice

An http request contains:

- aheader whosefirst lineisin the form VERB URL, the verb generally being GET or POST
- aheader ending: "\13\10\13\10" (two returnsto the line)

- possibly a message body, used for POST requests

The simplest way of parsing such arequest is to use a strfind to find the header ending and to apply the
strextr function to the header.

The response to an http request must also begin with a header. For example, you can take the following
header for atext message:

HTTP/1.0 200 OK\13\10Server: SCOL HTTP server\13\10Content-Type: text/htmli\13\10\13\10

People often forget to send this header, so make sure you don’t waste time by making such a careless
mistake.

Example:

var http_header="HTTP/1.0 200 OK\13\10Server: SCOL HTTP server\13\10Content-Type:
text/htmi\13\10\13\10";;

fun http_onrequest(con,db,req)=
let hd strextr req -> | in
let I->[com [url _]]in
if (!strcmpi com "GET") then strcat http_header "GET"
elseif (!strempi com "POST") then strcat http_header "POST"
else™;;

startHTTPserver _channel 8080 @http_onrequest nil;

106

In this example, you return a page depending on the verb in the request. You will note how it has been
parsed. If the verb is neither GET nor POST, you return an empty string. The client will therefore receive
this empty string, without a header, which will cause an error, which may be deliberate, as here.

2. Http client

a. Principles

To make an http reguest, the client must specify the verb, the URL, and possibly a message body.

In the case of a GET, only the URL needs to be specified, hence a ssimplified API in this case. You will
use the following function:

INETGetURL : fun [Chn S| fun [INET u0 S1] ul u0] INET

The arguments are:

the proprietary channel
the URL

aflag (leave at 0)
acallback

auser parameter

The function returns an ‘INET’ type corresponding to a request in progress, which can be interrupted if
you no longer want to receive the response.

The simplest solution in the majority of casesisto call the callback only after the response has been fully
received. However, there are some Internet applications (particularly pseudo-streaming) which return the
response in several chunks: several minutes can elapse between the start and end of the response. For this
reason, we considered it preferable to inform the Scol program every time data has been received. The
callback thus takes the following 4 arguments:

INET request

user parameter

data received

state of the request:

0: data has been received, it isin the third argument

1: thisisthe end of the request (the third argument is nil)
2: network error (the third argument is also nil)

Example:
fun cbgethttp(inet,z,s,reason)=
let z->[content] in

if reason==0 then (mutate z <- [strcat content s];nil)
elseif reason==1 then (_fooS content; fooS"OK");

107

else _fooS"ERROR";;

INETGetURL _channel "http://www.cryo-networks.com™ 0 @cbgethttp [nil];

It is difficult to detect network errors. Indeed, when an http client is behind a proxy and requests a non-
existent URL, the client in effect requests the proxy for this URL, and the proxy is then responsible for
requesting it from the Internet server corresponding to the URL. If the page does not exist, the proxy will
be informed. The proxy then often creates a quite valid html page with afew lines of text explaining that
an error has occurred. However, for the http client, the response isin order, not an error message.

If you are developing an application in which you are managing the http client and the http server, you are
advised to ensure that clients can easily determine whether the page they received was indeed the one
they expected, for example by having a‘magic number’ precedeit.

b. POST method

Having just seen how to perform a GET request, let us now move on to the POST method. This enables
you to pass a message body, by using the function:
INETGetURLex : fun[Chn SS S| fun [INET u0 S1] ul u0] INET
The arguments are:
- theproprietary channel
- theverb (POST)
- theURL
- the message body
- aflag (leave at 0)
- acalback
- auser parameter

Response reception — and callback operation — are exactly the same as for the INETGetURL function.

Y ou can interrupt aregquest in progress by calling the function:
INETStopURL : fun [INET] |

108

XI. Multimedia programming

Scol provides a number of multimedia possibilitiesin addition to 3D and the classic 2D interfaces.

Y ou should note, however, that some of these possibilities are very much platform-dependent. Some APIs
are not implemented on UNIX platforms: in this case the functions are present in their empty form (same
type, but the function always returns nil).

Consult the reference manual for details of each multimedia API.

1. RedPlayer API

This API is used to read a Real Player flow (audio and/or video). The program simply defines the URL of
the document to be read and is then notified of the state of progress. Sound is processed automatically and
transmitted to the loudspeaker. Images are passed to the program in a bitmap, and the program then does
what it likes with them: 2D display, use of bitmap as texture to apply the video to a 3D object, etc.

The APl also hastools to control the flow (read, pause, position, volume, etc.).
In addition, the API is used to operate the login/password system defined by Real.
2. Quicktime API

This API applies the same principle as for RealPlayer. The functions are different, however, since both
technologies are presented in afundamentally different way as far as the developer is concerned.

3. Basic multimedia AP

This uses multimedia players present on the system to play classic multimedia files such as Wav, Avi,
Mpeg, etc.

In fact, the Scol machine transmits files to the operating system, which will run them if it has the right
drivers.

4. Audio APl

The audio API has several components:

- mono recording/playback

- sample compression/decompression

- playback mixed with sound, possibly 3D

a. Mono recording/playback
109

This API is used to record sound by specifying the sampling frequency and sample size. It is also used to
play back these samples by further specifying the frequency and size.

This APl makes use of full-duplex possihilities if your hardware has them. If not, the playback start or
record functions will return errorsif you try to run both simultaneously.

b. Audio compression/decompression

This APl is used for compressing and decompressing audio samples. The compression method is suitable
for very low outputs since it goes down to a coding of 8 Kb/s, which represents a sixth of the pass band of
a57.6 Kb/s modem.

c. Playback mixed with 3D sound

This API (using DirectSound in Windows) is used to play back several samples simultaneously, while
being able to specify a 3D position for each one.

5. Video APl

The Scol machine is able to use a video camera via this APl and to capture images by specifying the
desired capture frequency.

Users define a callback function that will regularly receive the images. They can then:

- convert them to bitmap in order to display or save these images

- compress them for possible transmittal.

Thelibrary provides extremely useful video compression/decompression functions for this purpose.

6. Printing

At the other end of multimedia are printing functionalities. Scol enables two types of printing: raw text
printing and bitmap printing.

For raw text printing, you will simply pass the character strings to be printed.

For bitmap printing, you will pass the bitmap and the print coordinates and size (with micron precision).

110

XIl. The Scol machine: start-up, control, standard client and
server

Up to now we have described the internal operation of the Scol machine. Now we shall present a more
global overview, encompassing the start-up and control of a Scol machine. Moreover, a standard
connection method has been developed to define the notion of browser, and we shall use this section to
describeit in detail.

1. Scol Engine: the supervisor

When you start one of your Scol programs, another Scol machine always starts, characterized by the
display of awindow called Scol Engine. The Scol Engine allows the user to perform certain operations,
but above dl it acts as a supervisor, enabling the different SCOL machines present on the machine to be
managed through a graphic user interface.

The supervisor automatically starts up when the first Scol machine is started. Each Scol machine is
connected to the supervisor viaalocal TCP/IP socket, called life-socket: when this socket is closed by the
supervisor the Scol machine shuts down. Conversely, when this socket is closed by the Scol machine, the
supervisor is informed that the Scol machine has shut down. This socket is also used by the supervisor to
communicate with local Scol machines, for example to command the console window to open or close.

The supervisor is a normal Scol machine. What distinguishes it is that other Scol machines automatically
try to open a channel to it.

The precise use of the Scol machineis asfollows:

a. Started without argument
If the supervisor is aready present, nothing happens. Otherwise the Scol machine starts in supervisor
mode and then provides this function: see below for details.

b. Started with an argument

If the supervisor is absent, another Scol machine is started and sets itself up in supervisor mode.

Then the Scol machine is started with the argument which gives the start-up script and possibly rights and
memory size: see below for details.

111

2. Starting the supervisor

The supervisor presents an interface which provides the following functionalities:

B Starting SCOL machines whose start-up script is selected by the user from a drop-down menu.

B Maintaining a specific number of SCOL machines. these are started automatically when the
supervisor starts up and are restarted when they are closed.

B Visualizing SCOL machinesin operation, with start-up script name and time elapsed since start-up.

B Ability to destroy a particular SCOL machine and to display/hide the console window.

B Destruction of all the SCOL machines when the supervisor is closed.

Thefiles that need to be present in the Scol directory (usually * C:/Program Files/Scol’) are:

- usmress.ini: text file containing the initial definition of the resource variables

- usm.ini: text file containing “hard” parameters:

- echo: display mask

- port: port used by the supervisor (1200 by default)

- log: activation of log files

- logwin: console display in the event of a runtime error. If adjusted to ‘no’, the machine stops
immediately if thereisan error (thisis useful when you are working on a remote Scol machine)

- forcedIP: forces the definition of the local 1P address (this is useful when a server does not know its
apparent | P address from the Internet)

- HTTPproxy: http proxy

- update: Scol version date

- scol: name of the Scol dll in use

- plugin: name of a Scol plug-in (this line may appear severa times)

- disk: Scol partition (this line may appear several times)

3. Starting a Scol machine with a start-up script

In this section, we describe the start-up command line of a Scol machine.

The command line of the Scol machine may contain up to three arguments (only the first is
indispensable):

the first gives the start-up script,

the second gives the machine' s rights (see below),

the memory size to be assigned to the virtual machine.

3.1 Start-up script

The Scol machine uses a start-up script file, which can be either a file or a character string. The script
syntax was defined in the Channels and communications chapter.

112

On start-up, the machine creates an initial unplugged channel with a minimal environment. The script is
then run in this channel.

The start-up script is on the face of it very short: loading one or more Scol packages, then running a
command.

The start-up script can be expressed in two ways.
3.1.1 Script file

In this mode you simply pass the script file name with the *.scol suffix. For example:
C.\ Program Fi | es\ Scol \usmn n. exe C:\Program Fil es\ Scol\Partition\test.scol

The name of this machinewill be‘t est . scol ’

3.1.2 Script string

In this mode, you directly pass the contents of the script, expressed in arather special way:
- alphanumeric characters are retained

- spaces are replaced by ‘+' signs

- the other characters are replaced by a ‘%’ followed by 2 hexadecimal figures
This“script” is preceded by the name of the machine surrounded by $ signs.

For example:

C:\ Program Fi | es\ SCOL\ usmwi n. exe

$Tutori al / nytest. scol $%bf | oad+%22| ocked%2f | i b9%2f const ¥R2epkg¥22%0d¥0a%f | oad+¥22Tut ori al %
2f myt est Repkg?22%0d%anmai n%0d%0a

3.2 Operating rights

The second argument of the command line gives the maching's rights (these are rarely used). It is a
character string such as. CSDVRVK

The SCOL machine has certain rights, each represented by aletter:

C: client-networking (access to the _openchannel function with an address different from nil)

S: server-networking (access to the _setserver function)

D: distant-networking (access to the _openchannel function with aremote address)

M: opening new machine without cache (starting a machine without its cache being activated)

R: normal file reading (access in read mode to unsigned files)

W: norma file writing (access in write mode to unsigned files)

K: signed file writing (access in write mode to signed files)

113

The C_Rights, S _Rights, ..., K_Rights constants are defined in the Scol language (they are whole masks).
A Scol machine can know its parameters:

_getrights : fun [] |
Returns the maching’ s rights (to be used with the previous masks).

_setrights : fun [I] 1
Defines new rights in the direction of the restriction (necessarily below those of the machine).

3.3 Memory

The third and final argument of the command line gives the size of the memory used by the Scol machine.
Thissize is expressed in words of 32 bits. For example, 262144 will correspond to a memory of 1 Mb.

_sizenmenory : fun [] |
Returns the size of the SCOL machine’'s memory (counted in words of 32 bits).

_freenmenory : fun [] |
Returns the size of the SCOL machine's free memory (counted in words of 32 bits). This function triggers
a Garbage Collector and isthus relatively slow.

4. Starting a machine or another process with a Scol machine

One SCOL machine can start another by means of the following command:

_newrachine : fun [S S, 111,171 1

Creates a new machine whose name is S, with a start-up script S,, and with rights I, and memory size I..
Obvioudly, the new machine’ srights are at most equal to those of the old machine.

If I, or I, areni | , the new machine inherits the old machine' s values.

_newrachineS : fun [P11y 1,171 I

Creates a new machine with the script file P, and with rights I, and memory size |,. Obvioudly, the new
machine’ s rights are at most equal to those of the old machine.

If I, or I, areni | , the new machine inherits the old machine' s values.

_openbrowserhttp : fun [S] S
Historically, this function commands the standard browser on your machine to open by passing a URL as
an argument. In fact, you can do more with this function; it depends on your URL’s prefix:

-http:// : opens your maching's standard browser
-ftp:// . opens your machin€e’ s standard browser

114

-mailto: : opens your machine’s standard browser
-file:l/ . opens the file after the user has given his or her agreement through a dialog box

Examples: there’ s no need to write a program to use the _openbr owser ht t p function; use the Scol
Engine and enter the following examples as URLs:

http://ww. cryo-networ ks. com

mai | to: scol . i nfo@ryo-interactive.com

file://C /Wndows/cal c. exe

5. Communication between the Scol machine and the supervisor

The Scol machine is linked to the supervisor by a normal channel. This channel is defined as being the
_masterchannel, and the corresponding socket is called socklife.

The _masterchannel Scol variable is accessible to users. They can make use of it to send messages to the
supervisor.

Example:

def com Copen=open S; ;

_on _mast erchannel Copen ["http://ww. cryo-networks. coni'];

The ‘open’ message asks the supervisor to open a connection to a URL (http or Scol).
The ‘goto’ message does the same thing, then closes the sending Scol machine.

The socklife socket has one distinguishing feature: when it is closed (shutdown or error), the SCOL
machine stops.

6. Standard server and client

6.1 General remarks on Scol machine communication

Scol machines communicate by exchanging messages in the form of command+arguments (see the
section on Channels and communications). When a message reaches its target, the latter searches to see if
afunction bears the same name as the command; if so, it executes this command.

In fact, when a Scol machine sends a message to another Scol machine, there is nothing on the face of it
to guarantee that its correspondent has defined a function which bears the name of the command
contained in its message. You can define a ‘vocabulary’ notion: a Scol machine's output vocabulary
corresponds to the group of commands that it is capable of producing. A Scol machine's input vocabulary

115

corresponds to the group of commands that it is capable of interpreting, namely, the group of functions
starting with a double underscore.

In order for two machines to communicate with each other, it is essentia that the output vocabulary of
one corresponds to the input vocabulary of the other, and vice versa. Otherwise, the messages sent by one
machine will not be interpreted by the other: if Alice sends Bob a message ‘f 1’, Bob has to have the
__f function on his machine (more specifically, in the environment of the channel which connects him to
Alice).

Scol’s distinguishing feature is that a machine's vocabulary is dynamic: you can at any time modify the
environment of a channel, either by adding packages, or by subtracting packages. What this means is that
you can modify the machine’ s input and output vocabulary at any time.

When Alice calls Bob's machine, Alice does not know then what vocabulary Baob is using, but as soon as
Bob has told her which files to compile on her channel, Alice can modify her vocabulary and make it
compatible with Bob’s. Unfortunately, Bob cannot tell Alice which files to compile as he needs a
common vocabulary to do this.

To solve this problem, we have defined what we call the standard server and client, which are in fact files
written in the Scol language. Their role is to initiate a communication between two Scol machines. When
Alice calls Bob, the following operations occur:

- Alice uses the standard client on the connection channel to Bob.

- When Bob receives Alice's connection request, he places the standard server on this channel.

- The standard server then gives the client the list of packages necessary to proceed further.

- The standard client checks that it possesses these packages.

- If there are some missing, it informs the server, which sends them to the client.

- When the requisite packages are in the client’ s possession, the server sends the client a start-up script.

- When the script has been sent, the server withdraws the standard server package and runs a script, called
server script.

- Similarly, the client withdraws the standard client packages and runs the script that has been sent by the
server, called client script.

- At this time, Alice’'s and Bob’s vocabularies are fully synchronized (as long as Bob has sent the right
packets). Bob’s real server application can now begin.

6.2 Standard server — version 3

Aswe have just seen, the server that uses the standard server must supply severa elements:

- It must initially place the standard server version 2 on the channels that connect it to its clients. Thisis
doneinthe_set server declaration. Example for a server on port 1285:

_setserver _envchannel _channel 1285 " load \"| ocked/stdsrv3. pkg\"";

- It must supply aserver script. You need to declarethescri pt server variable:

116

var scriptserver="_load \"fs/fssrv2. pkg\"\n_contact";;
- It must supply aclient script. You need to declarethescri pt user variable:
var scriptuser="_load \"fs/fscli.pkg\"\nmain

- It must supply the list of packages required by the client. You need to declare the packsusers
variable, whichisalistof type[[S S S] r 1] : thefirst string is the name of a package, the other two
must be empty strings.

var packsusers=["fs/fscli.pkg" "" ""]::nil;;

- It must supply the minimal version number of the Scol Engine of the clients supported by the site.
var versi onuser =0; ;

This version number will be compared with the number returned by the _ver si on function.

Example:
The client needs the file “sample/foo.pkg”. The client’s script is _load “sample/foo.pkg”\nstart. The
server’sscript is_load “ sample/bar.pkg” \nstart. Then the server is written:

[* server */

var packsusers=["sanpl e/ f o0o. pkg" l:inil;;

var scriptserver="_load \"sanpl e/ bar. pkg\"\n_contact";;
var scriptuser="_load \"sanpl e/ foo.pkg\"\n_contact”;;
var versi onuser =0; ;

fun main()=
_setserver _envchannel _channel 1285 " |oad \"| ocked/stdsrv2. pkg\"";;

For those who are interested :

- the standard server usesthefile: | ocked/ st dsvr 3. pkg

- the dtandard client uses the filess | ocked/ stduser. pkg, | ocked/stduserl. pkg,
| ocked/ st duser 2. pkg etl ocked/ | Prequest . pkg

We will seein the ‘Integration in a Web page’ section how to start the standard client “manually”, but in
fact the Scol Engine takes care of it for you when you enter a URL without a prefix or starting with
scol : //

Note: Versions 1 and 2 of the standard server exist; their file names are "l ocked/ st dsvr . pkg" and
"I ocked/ st dsvr 2. pkg". Version 3 is similar to version 2, but uses the new ‘zi p’ compression
instead of ‘nei p’.

117

XIIl. Integration possibilities

Scol offers many gateways to other technologies:
1. Interfacing viafile exchange

This is of course the most obvious method, which is used mainly on the server side: since the Scol
machine has access to al the files contained in the Scol partitions, al that is required is for the technology
that you want to interface with Scol to produce or use files in these partitions, and for your Scol server to
produce or use the samefiles.

2. Interfacing via database: SQL library

This is used only on the server side: the server accesses data from another information system via SQL
databases (using Odbc technology)

3. Interfacing via http: server or client http libraries

On the Scol server side, the two libraries are used indiscriminately:

- http client: the technology that you want to interface with Scol is a web technology (cgi, asp, €tc).
Consequently, your Scol server can itself become a client of this web technology by performing http
requests itself thanks to the client http library.

- http server: the technology that you want to interface with Scol is aweb client technology (often used
in payment systems for example: the payment server makes an http request either itself or via the
surfer's web browser, indicating the result of the operation: success or failure). Your Scol server can
thus receive and process these requests by opening an http server thanks to the server http library.

On the Scol client side, the client http library will mainly be used. This alows the Scol client to access
any given web services, in other words to make a request and analyze the reply. For example, to represent
in 3D the result of a search on an engine such as Altavista or Y ahoo, the Scol client will make the search
request, receive the reply, analyze it and convert it into a 3D representation.

4. Integration in aweb page

a. Simple interfacing

Scol can be run as a Netscape plug-in or as an ActiveX component for MSIE or visual Basic.

To integrate Scol in a Web page, smply enter the following code (the example here describes a 500 by
400 point zone):

118

<body onLoad="Load()" bgcol or ="#FFFFFF" t ext="#000000" |i nk="#00CCCC'>
<obj ect

i d="scol "

nane="scol "

cl assi d="cl si d: 7A96FF35- 4937- 11D1- 8F2C- 00609779BDA3"

codebase="htt p://wwmv. cryo- networks. com files/atlscol.dll"

al i gn="ni ddl e"

bor der =" 0"

wi dt h="500"

hei ght =" 400" >
<enbed

al i gn="basel i ne"
bor der =" 0"

wi dt h="500"

hei ght =" 400"
nanme="scol "

pl ugi nurl ="http://ww. cryo- networks. com fil es/scpl0. exe"
pl ugi nspage="http://ww. cryo-networks. conifil es/scpl0. exe
type="application/ x-scol "></ enbed>

</ obj ect >

<script LANGUACE="JavaScript">
<l--
function Load()
{
i f (navi gat or. appNanme==" Net scape')
{
docunent . scol . LaunchMachi ne(* $br owser $%f | oad+%221 ocked%2f st duser ¥2epk
g%R2%amai n+%22scol ¥Recr yopol i s¥2econ?BaCryopol i sy@2+f fffffff+NL
CSDMRWK 262144’ , 1, 0);
}

el se

{
scol . LaunchMachi ne(‘ $br owser $9f | oad+%22] ocked%2f st duser ¥Repkg¥22%anma
i n+9%22scol %2ecryopol i s¥%2econ¥BaCryopol i syR2+f fffffff+N L CSDVRWK
262144’ , 1, 0);

}

}
Il-->

</script>

119

There are in fact differences between Netscape and MSIE in the way Scol is started, but in both cases you
use a LaunchMachine function, by passing the command line as an argument, here a "standard user"
client, to port 220.87.26.15:3005

You will notice the syntax of the Launchmachine functions argument. It consists of a character string
containing three words separated by spaces:

- the machine start-up script: ‘$name$script’ type, the script being in “ strtoweb ” format.

- the machine srights (generally CSDMRWK)

- thesize of the memory given to the machine.

In general there will be two types of script:
- thescript starting the Scol machine in aweb page, which isthe “ stduser ” script:

_load "locked/stduser.pkg"
main "url" ffffffff NIL

Which, by applying the strtoweb function (replaces spaces with + and al non-alphanumeric characters
with %ascii_code_in_hexadecimal) for thescol . cryopol i s. com Cryopol i s url, gives:

96f | oad+922l ocked%2f st duser ¥epkgd22%amai n+¥22scol ¥2ecr yopol i s¥2econtb
3aCryopol i sy@2+f fffffff+NL

However, since the Scol machine applies the webtostr function on this string, a function which only looks
for the characters + and % and leaves the others unchanged, it can be written more clearly:

_l oad+” | ocked/ st duser . pkg” %®amai n+"scol . cryopol i s. com Cryopol i s”"+fffff
fff+N L

Which gives:

... LaunchMachi ne(‘ $browser $_I| oad+” | ocked/ st duser . pkg” ¥®anai n+"scol . cry
opolis.comCryopolis”+Hf fffffff+N L CSDVRWK 262144’ ...

N.B. the quote mark (') character can only be used provided the apostrophe (') is used as a delimiter of
the character stringsin Visual Basic or Java Script : ...LaunchMachine('_$browser...)

- the script starting the Scol machine in autonomous mode (the Web page starts a Scol machine that is
not integrated in the page, but that is not destroyed when you change pages or close the browser):
_load "locked/link.pkg"
main "url"

120

Thiswill produce the following script string:

_load+” | ocked/ | i nk. pkg” %®armai n+” scol . cryopol i s. com Cryopol i s”

Which gives:

... LaunchMachi ne(‘ $browser $_| oad+"1 ocked/ | i nk. pkg” %®anmai n+" scol . cryopo
lis.com Cryopolis” CSDMRWK 262144’ ...

b. passing of parametersin the url

If your site uses DMS architecture (site created with SCS or with Cryonics), the url can aso be used to
pass parameters to machines (this involves resource variables that the Scol machine will be able to read
thanks to the _getr ess function).

The form of the url isthen:

Name_machine:port_or_name_service/resourcel+valuel/resource2+value?...

For example, you want to pass the resource variable ‘login’ with the value Alice, and a resource variable

“authorization_number’ with the value 123456, for the Cryopolis site. The associated url is:
scol.cryopolis.com:Cryopolis/login+Alice/authorization_number+123456

The Scol machine will be able to read the values ‘Alice’ and ‘123456’, naming them _getress " login"

and _getress" authorization_number" respectively.

Comment: if the value contains special characters, such as + or ', you should remember that your string

will beread in“ webtostr ” format and therefore replace these characters with %ascii_code_hexadecimal .

Furthermore, if you have used characters such as spaces, carriage returns, etc., bear the following in mind:

- the program assumes that between two “ /” characters in the url, it can apply the webtostr Scol
functionsthen strextr to obtain alist (resource: :vaue: :nil) : :nil

If your site does not use DMS architecture (which should be quite rare), you recover al these resource
definitions in the form of a list [[S r1] rl] containing one line per definition, in the “ parameters”
variable.

Instead of _getress" login", you will be able to use switchstr (strextr _getress" parameters') " login”

¢. using the window supplied to the component by the container

The Scol machine started as above as an ActiveX component can use the zone which the container
dlocates to it by using the following function:

_CETactiveXWndow : fun [Chn | S] Obj Wn
The integer is the window’s flag, the string is the window’s name. This function returns ni | if the
window is not available, which isthe caseiif:
- the Scol machine has not been started as an ActiveX component or a Netscape plug-in
- the component’s zone has been defined in an invisible web page (only for certain browsers)

121

d. Sophisticated interfacing

In some applications it is useful to have a Web page communicate with the Scol component that it
contains by using JavaScript in the Web page. Thisis perfectly possible with Scol.

The starting of the component is different in Netscape, because to make this communication possible the
component must be started by Java (and not JavaScript). The basic Web page is therefore the following:

<body bgcol or ="#000000" text="#7DcDe7" |i nk="#FFFFOOQ"
vl i nk="#FFFFO0" al i nk="#FFFF00" onLoad="Load()">
<OBJECT | D="scol "
NAME="scol "
W DTH=500
HElI GHT=400
al i gn="basel i ne"
bor der ="0"
CLASSI D="CLSI D: 7A96FF35- 4937- 11D1- 8F2C- 00609779BDA3" >
<EMBED nane=scol
type=appl i cati on/ x-scol
bor der ="0"
wi dt h=500
hei ght =400>
</ EMBED>
<SCRI PT LANGUAGE="JavaScript">
<l--
function Message(txt)

{

sel ectnsg(txt);

}
/'l --></ SCRI PT>

<appl et name="nyscol " code="Scol Test. cl ass"
wi dt h=5
hei ght =5
mayscri pt>
</ appl et >
</ OBJECT>

<scri pt LANGUACGE="JavaScri pt">
<l--

function Load()

{
i f (navi gat or. appNanme==" Net scape')

{

122

docunent . nyscol . run(*‘ $browser $_I| oad+" | ocked/ st duser. pkg” ¥®amai n+" scol .
cryopolis.com Cryopolis"+ffffffff+N L CSDVRWK 262144’ ,document) ;

}

el se

{
scol . LaunchMachi ne(* $browser $_I oad+" 1 ocked/ st duser . pkg” ¥amai n+"scol . ¢
ryopolis.com Cryopolis”+ffffffff+N L CSDVRWK 262144’ ,1,0);

}

}
I-->
</script>

<script |anguage="JavaScript"><!--
function sel ectmsg(nsg)

{

/l--><[script>

<script |anguage="VBScri pt"><!--
Sub scol _Message(nsg)
call sel ectnmsg(nsg)
end sub
--></script>

In this example, the selectmsg function receives the messages sent by the Scol machine. These messages
are sent by the function :

_onX : fun [Comi |
N.B.: For reasons known only to Netscape' s developers, the JavaScript code processing the message must
specify complete URL s rather than relative ones, otherwise the Java machine crashes without warning.

To send a message to the Scol machine, the latter must first define the channel supposed to receive them:
for this definition you use the function:
_setX : fun [Chn] Chn

Then you just write in JavaScript, for example:

i f(navi gator. appNanme==' Net scape')
{

docunent . scol . SendMessage(' _f 1 "abc"');

}

el se

scol . SendMessage(' _f 1 "abc"');
123

}

This message will be received by the channel defined by the set X function. The Scol machine will then
search for a_f function taking two arguments, an integer and a string. The message’s format is that of
Scol messages and therefore that of the scripts.

5. ActiveX integration in container mode

ActiveX technology is a Microsoft technology, available only with Windows. It is based on the concept

of components and container:

- acomponent is any given functionality that is relatively autonomous and which generally requires a
window in which it can offer a graphic interface, and which can communicate externally via an
incoming and outgoing APl (sending/receiving of messages, which are in fact sets of calls to
functions and callbacks)

- acontainer is adocument (typicaly a window), in which you define a certain number of zones (sub-
windows) in which you activate ActiveX components. Once the components have been activated, the
container can communicate with them via the component’s API.

Scol technology is both an ActiveX component and container. The ActiveX component mode is used to
integrate Scol in the Internet Explorer browser (which is itself an ActiveX container). The ActiveX
container mode can be used on both the client side and the server side:

- Ontheclient side, it is used to integrate - in the Scol client interface - functionaities available in the
form of ActiveX components. For example, a Web page (Internet Explorer is aso an ActiveX
component), a particular viewer, etc. However this presents two limitations (which only exist if your
serviceis open to the public):

- Since ActiveX technology is only available on Windows, only visitors to your site who use Windows
will be able to access these functionalities

- Scol does not handle, for security reasons, the downloading of your ActiveX components. You
therefore have to perform this operation yourself. However, the Scol program can detect the presence
of an ActiveX component.

6. Interfacing viaBSD socket (Telnet library)

The Scol machine has a Telnet API (client BSD sockets). This can be useful on the server or the client

side:

- onthe server side, you can open a connection to any given TCP/IP service.

- onthe client side, you can also connect to any given TCP/IP service. However, most firewalls block
this type of connection, and there is no way of getting round it. It should be noted however that the
Scol Telnet library is compatible with SocksHost type proxies.

7. Interfacing via Scol socket

It is always possible to connect to a Scol machine by passing yourself off as another Scol machine. This
makes interfacing far simpler, as it takes advantage of the parsing and channel management that are

124

aready integrated in a Scol machine. Traditional TCP/IP sockets are used for this with the following

protocol:

- each message consists of two parts:

- atwo-byte header coding the size of the message body (in the order low byte, high byte)

- amessage body whichisin fact aline of Scol script (refer to the relevant chapter for details about the
syntax).

125

XIV. DMS Programming: Distributed Modules System

This chapter describes the architecture of programs referred to as DMS. This is a “component” type
architecture; as such, its purpose is to save developers from having to redevel op everything with each new
application, by allowing them to use components from other applications. For this reason, we cannot give
a complete example of its use. We will content ourselves with presenting some examples of components.
To create applications from components, you will need the SCS development kit, based on the DMS
architecture.

1. Presentation

Scol technology is based on a programming language that integrates Internet communication possibilities
associated with a certain number of graphic, 3D, multimedia, SQL, etc. libraries. The first objective of the
Scol technology is therefore reached: to provide developers with a simple and powerful tool that makes
development faster and more reliable. The technical difficulties are resolved by the technology:;
consequently developers need only concentrate on the real problems, those specific to the application they
are developing.

The technology’s second objective is more ambitious: Scol technology can aso be of interest to creative
users who are not necessarily experienced in programming techniques, in other words, users who would
adopt an integrator approach, taking a graphic element here, an interfacing element or part of a program
there, to subsequently build a distributed-type application, avirtual world for example.

For this purpose alone, it would have been possible to program a kind of Wizard that would ask users for
their preferences, suggest some options and build a ready-to-use application. This approach would soon
have proved limited and disappointing, since such atool would offer no flexibility.

The solution chosen was to define a particular method of using Scol technology. This method makes it
possible to homogenize programming developments by introducing the concept of the “module’. Since
the modules are distributed (in the IT sense of the word), the programming method is known as DMS:
Distributed Modules System.

A module is part of a program that performs a given function. Seen from the outside, modules al
resemble one another, a bit like an integrated circuit: the case is the same, the pins are al similar, only the
number, the direction (incoming or outgoing) and the function of the pins are different. To create an
application, al you need to do is assemble the modules and create links between the pins. This is done
with the mouse and without programming.

The modules are distributed: one part runs on a machine caled the ‘ Server’, the other part runs on user
machines caled ‘Clients. Deciding what should be calculated on the server and what should be
calculated on the clientsis a complex IT problem, which is out of the general public’s reach. The module

126

therefore removes this problem: it is not up to the person who assembles these modules to determine the
question, but to amodule’ s devel oper.

There are other systems based on modular programming. The original aspect of DM Sis twofold:

- Modules are assembled by creating links between the modules, and not using a programming language,
often referred to as a script language. Having to use such alanguage, even if smple, puts the use of these
architectures outside the reach of the genera public

- The modules are distributed, but the user does not need to concern him or herself with it. He or she does
not need to define one assembly of modules for the server and another for the clients; only one assembly
needs to be defined.

DMS architecture is not only useful for the general public, it also saves the developer a lot of time.
Developing a DMS module is easy. Transforming a simple function into a DMS module means you do
not have to develop functionalities already present in other modules: log files, console windows,
passwords, statistics, etc. In this way the DMS constantly evolves, for everyone's benefit, as new
modules are devel oped.

To develop aDM S module, two or three program parts need to be written:

- the server module : program running on the server

- the possible client module: if part of the processing is carried out on client machines (mainly interfaces),
you must write the program that will run on the clients

- the module editor: this editor will integrate itself in the editor of the DM S sites (SCS)

Each of these parts of programs uses an API the details of which are given further on.

2. Definitions

Let us begin with afew definitions.

Dms Site
Distributed application complying with the architecture described in this document

Client
Software running on the computer of a Dms site user

Server
Software putting users into contact. There is one server for each Dms site.

Module

Congtituent element of a Dms site. Usually distributed, it has a server part which runs on the server side,
and a client part which is duplicated on the client machines. To make discussion simpler we will say
‘server module’ for ‘server part of amodule’, and ‘client module’ for ‘client part of amodule’.

127

Similarly, we will say ‘associated client module and server module’ for ‘client and server parts of a
modul€'.

User

Generalizing concept of a user present in the site. This user is either real (in which case it correspondsto a
client), or virtual (meaning an entity stored on the server). The users move aong the links.

Exactly one user correspondsto each client.

Event

Signa leaving a module. The event is either a client event (the source of the event is a client), or a server
event (the event is produced on the server): this localization is decided by the module's author. A User is
generally associated with such asignal: in fact the signal is the sign that the User is“moving”.

Action

Signal entering a module. The action is either a client action (the action is usually processed by a client
module), or a server action (the action is processed by the server module): This localization is decided by
the modul€’ s author.

Message
M essage sent between a server module and an associated client module (in either direction).

Link
Association of an event of one module with an action of another module, possibly subject to conditions.
Y ou can assigh a parameter to alink. Thiswill be referred to asthe ‘link’ s parameter’ .

Zone
Rectangular graphic zone used by a module to present aresult, an interface, etc.

Document

Graphic window in which one or severa zones can be defined. The documents are organized in a
hierarchy. This hierarchy defines two types of child windows: * popup ” child documents (opening above
the parent document), and simple child documents, corresponding to a zone of the parent document. A
main document is one which doesn’t have a parent document.

A Dms site uses two main documents, the server document and the client document.

3. Principles

3.a Module architecture

The architecture of a Dms site is modular: a site is made up of a variable number of modules, connected
to each other via links. Each module manages one or more functionalities: log, authentication, 3D space,

128

etc. Each module can have a distributed operation: one part of the processing is performed on the server,
another on the clients.

The role of a Dms site’s author is therefore to select a certain number of modules and assemble them by
creating links between them.

One of the mgjor problems in creating an application which puts different users into contact is to establish
how the processing will be divided between the server and the clients. This problem is eminently
technical, and therefore beyond, a priori, someone who would be building a Dms site. The problem of
distribution will therefore be resolved within a module, by whoever has developed the module.

Generaly, each module will be divided in two, one part running on the server, another on the clients. The
communication between the client part and the server part of a module will be managed exclusively by
the author of the module, using the traditional communication techniques included in Scol.

Communication between the modules will be in the form of links, and will therefore be defined by the
site’s author.

The modules each have a name, the only restrictions on which are that:

- two sibling modules must have different names (see encapsulation later on to know more about
sibling modules)

- aname must not start with the character ‘.’

3.b Tree of documents

A module can at any time request the use of one of a document’s zones, or on the contrary, stop using a
zone. The system manages the display of the documents in such a way that the document is visible as
soon as a least one of its zones is currently being used by a module. A document that no longer has a
zone in use is destroyed, except for the main document, which is the parent of al the others, and shows
the application’s presence.

3.c Encapsulation

The modules can be encapsulated: a set of modules can be grouped together and replaced by a black box
which contains them. The modules are therefore organized in a tree of modules whose non-leaf nodes are
black boxes. Each module can then be linked to a sibling module, a child module or the parent module.
The black box acts as atransparent relay: actions are directly connected to events, in both directions.

3.d Inter-module links and communication

129

A link joins one of a modul€e’ s events to one of another modul€e’ s actions. The number of links attached to
a given event or a given action is not limited. The links are directiona: from the event to the action. A
default parameter and/or a condition is associated with each link.

A module can trigger an event at any time. The system converts it, according to the links, into actions for
other modules. Each module concerned by the action is informed of the sender’s identity, and can reply,
if the sender has provided for this, using a system of “ tags”.

Two types of inter-module communication can therefore be defined:

-communication by an event:

An event is sent to the system, which converts it into actions, in compliance with the links laid out by the
site’s author. The event can be issued by the server module or the client module. The action can be
received by the server module or the client module. However, the client->server link can present a
security weakness: there is nothing to prove that the client module is running correctly.

- communication by areply:

When a module issues an event, it can associate it with a reply “ tag”, which is actualy a callback
function that expects to receive a parameter and/or a list of Users. The module that receives an action
associated with this event can then reply to this“ tag ” by providing a parameter and/or alist of Users.

In fact an event represents the “ movement” of a User, leaving a module via a particular pin. Links
leading from this pin take the User to other modules. This doesn’t mean however that the User quits the
module that has produced the event: a User can be ubiquitous, meaning he or she can be present in several
modules at the sametime.

For this reason, an event is defined by the following elements:

- aUser: someone who moves around in the module graph

- aparameter: agiven character string. If the value of this string is nil, the parameter is replaced by the
first non-nil default parameter associated with the links that the event follows

- alist of Users connected with the event

- areply“tag”

Each of these elements is optional and can be replaced by nil. However, it is extremely rare for the User
argument to be nil, since an event isin fact the movement of a User.

If an event is produced by a client module, the associated User is implicitly the one that corresponds to

the client module.

If an event leads to an action that is usually located on a client module, the routing carried out depends on

the associated User:

- iftheUserisred (i.e. correspondsto aclient), the action is processed by the module of the associated
client

- if the User isvirtua, the action is processed by the server module

This means that an event's User parameter allows al routing problems to be resolved.

130

3.e Dynamic activation

Creating a site consists in assembling a set of modules. Each machine (client or server) has an
approximate copy of this site: this means that certain modules are not represented on each machine. For
example, only the 3D space module where a user is located is represented on this user's maching;
however, all the site's 3D space modules are represented on the server. This observation brings up the
question of the dynamic activation of the modules: while the modules are al active on the server side,
only afew modules are active on the client side: the number and nature of the active client modules varies
according to the time and the client.

In fact, it is the server module that triggers the activation of the client module on a given client machine.
For each server module, the system manages the list of activated client modules, which alows it in
particular to filter messages, thus guaranteeing security in the exchange of messages. Activation is not
therefore automatic: the fact that an event is linked to one of a modul€'s actions does not mean that that
this module will be created if the event occurs. If the event occurs when the module receiving the action
has not been created, the event is simply ignored.

To activate a module, a certain amount of data must be transmitted to the client, and the client must, if
necessary, download a certain number of files (in particular Scol source files describing the operating of
the client module). Activating a module on a client is therefore a complex operation that may take some
time. During this time, the client module is * dormant ” and buffers the messages and actions it receives
until it can be properly started: once al the necessary files are present, the client module is compiled,
started, and all the buffered messages are processed.

131

3.f Users and Userinstances

We have seen that Users are the mobile elements of the DM S architecture: they move along the module
graph when events occur. A module therefore receives aflow of Users.

When the module considers it useful, it can define a structure known as a Userlnstance. For a given

module, only one Userlnstance can be defined per User. The Userlnstance object is an object:

- associated with a User,

- distributed and synchronized between the client and server parts of a module, and offering highly
practical possibilities for communication between these different parts.

3.g The SCS site editor

The site editor (whose commercial name is SCS for Site Construction Set) is the tool linked with the
DMS architecture. It is used to:

- select modules to be integrated in the site: create, remove

- define server and client documents

- define links between modules

- assign zones to the modules: indicate in which zone the 3D will be displayed, a button, an image, etc.

- start the module editors

Indeed, each module usually contains an editor that is used to define its parameters. For example:
- defining a 3D space for amodule managing 3D space
- defining the texts of a display banner module

A digtinction will be made between the two types of editor: site editors and module editors. The module
editor is usually written by the module devel oper.

4. Downloading of resources

The server also plays the role of resource distributor. A resource is a given set of bytes. A resource is
named and belongs to the module that is its owner. Resources are the data that the clients will be able to
download: files containing the client modul€'s program, graphic, 3D or sound files, etc. It is important
that each module records the resources that the client may need, as this ensures automatic update and
mobile code possibilities. otherwise only clients that already have these files will be able to operate
normally. This may be an oversight or a deliberate omission to select clients. When a module is being
developed, it is important to check that when a “first time” client connects to the site, it will indeed
download the client data specific to the module.

132

A resource is usually accessible to any client whose client module corresponding to the proprietary server
module has been activated. However, the resource can be protected by limiting access only to authorized
clients.

On the server side, the resource may be present in the server’s memory or stored on disk. Only in the first
case can it be compressed before being downloaded by the client. In the second case, the data will be
directly transferred: it is therefore recommended that the file already be compressed (jpeg graphic file for
example).

On the client side, the resource can be stored in the cache under a given name that would show — when
subsequently used - whether the resource needs to be downloaded or if it is already present. The resource
can also be provided directly to the client, without saving it to the disk first.

The server calculates the signature of the resources submitted to it. This signature is transmitted to the
client module when it is created. The client module checks the signature of the file bearing the name of
the resource and, if it doesn’'t correspond, downloads the resource again. Checking that a client does
indeed have a given file is done by comparing the signature of its content, and not by looking at its
creation date, as this latter method is much lessreliable.

A server module can:

- record a resource by specifying its name

- unrecord a resource by specifying its name
- unrecord al the resources

- authorize a client to access aresource

A client module can:

- request the downloading of aresource if it knows its name, and choose whether or not to go via the disk
cache

- stop the downloading of aresource

- stop al the downloads that it has requested.

A client can aso transfer a resource to the server, through an upload mechanism.

N.B.: when you are developing a module and are working on the client part, remember to restart the
server in order for the changes made to the client code to be accepted. Indeed, the server calculates the
signature of the resources when it is started. If you change a resource without restarting the server, the
signature of the old resource stays in its memory. If you then start a client, the server will transmit to it the

old resource, which will be placed in the cache partition. This will mask the new resource, and you will
be left wondering why your changes have not been accepted.

5. DMS site definition files

DMS sites are defined through two types of files.

133

Dmc (Distributed Modules Class) files define a module class: for example, a log management module, a
3D management module, a text interface module, etc. A Dmc file contains the list of files used by the
module class -typically parts of programs - which will be automatically recorded as resources on the
server, then the modul e start-up scripts, one for the server, one for the client, and one for the editor.

Note that the DMS system creates an unplugged channel for each module, whether this is on the server,
the client or the editor. This channel inherits APIs described further on. Consequently, communication
between modules always takes place through the API.

The Dmsfile contains the definition of asite:

- themodule graph (tree of modules and inter-module links)
- thedefinition of the client and server documents

- the parameters defined for each module

It may be noted that in the previous version of SCS, the site was defined using two types of file:
- the Scsfile containing the module graph and the definition of the documents
- thedmi files each containing a modul€ s parameters.

It isworth specifying the different elements’ origins:

- theDmcfileis created by the module developer

- the Dmsfileis created by the site editor (the SCS)

- thedefinition blocks of amodule (starting with the ‘dmi’ block) are created by the module editor

5.1 DMC file: distributed modules class

A dmc file describes amodul e class.

name [name of class]: name of the class (for the editor)

register [file 1] ... [filen]: list of files to be saved by loading them into the memory
registerF [file 1] ... [filen]: list of filesto be saved without loading them into the memory
serverNeeded [file 1] ... [file n]: list of files required to start the server

serverLoad [file 1] ... [filen]: list of files to be successively compiled to start the server
clientNeeded [file 1] ... [file n]: list of files required to start the client

clientLoad [file 1] ... [filen]: list of filesto be successively compiled to start the client
editorNeeded [file 1] ... [filen]: list of files required to start the modul e editor
editorLoad [file 1] ... [filen]: list of filesto be successively compiled to start the editor
bitmap [fil€]: name of the file containing the default icon to be used by the site editor.
helpFile[help file: help file for the editor

All thefile names are:

- Either absolute: for example ‘dms/admin/log/log.pkg’

- Or relative: descending in relation to the dmc file directory. This means that they start with an *./" :
for example ‘./log.pkg’. The sequence ../ is not recognized.

134

The files for the *...Load" lines do not need to be rewritten in the *...Needed’ lines: the system assumes
that they must be necessary for the module to start (since they have to be compiled).

To determine the list of files that are useful to the site (with a view to duplicating the site on another
server for example), the system concatenates the lists register, registerF, serverNeeded, serverLoad,
clientNeeded and clientL oad.

Let us now describe the start-up mechanism of a server module. When a server module is created, the
system checks for the presence of the ‘serverNeeded’ files. It then creates an unplugged channel that
inherits the server API, successively compiles the files for the serverLoad line in this channel, then runs
the IniDMI function (see further on).

Now let's turn our attention to the start-up mechanism of a client module. When the module is activated
on a client machine, this machine starts by checking that it has the Dmc file. If this isn’t the case, it
downloads it from the server. Thisfile does not have to be declared in the list of resources (‘ register” and
‘registerF lines), asthisis done automatically for all the modules that are present on the server.

Then, the client makes sure that it has all the files for the ‘clientNeeded’ line. If any are missing, it asks
the server to supply them. Thisis only possible if these files appear on the ‘register’ or ‘registerF line. If
only onefileis missing, adialog box appears on the client, which is subsequently interrupted.

When dl the required files are present, the client module is created as follows: an unplugged channel is
created, inheriting the client API, then the files for the clientLoad line are successively compiled, then the
IniDMI function (see further on) is called.

Thefiles placed on the ‘register’ line are processed as follows:

- they are read, then compressed (zip function)
- then they are kept in the Scol machine's memory
- they are transmitted to the client that requests them

Thefiles placed on the ‘registerF line are processed differently:

- they are read, but not compressed
- they are not kept in the memory, but stored on disk
- when aclient asks for them, they are reread on the server’s disk

The only advantage of ‘registerF filesis that they don’t take up too much of the server’s memory. Thisis
why the 3D module puts textures on this line. The fact that there is no compression is not a drawback
since most textures are in jpeg format, which is already compressed to a considerable degree.

As regards the editor, to start the module editor, the site editor checks that the ‘editorNeeded’ files are
present. If only one is missing, a dialog box appears to indicate that the editor cannot be started. If al the
files are present, the editor creates an unplugged channel that inherits the editor API, successively
compliesthe ‘editorLoad’ linefiles, then calsthe ‘IniEditor’ function (see further on).

135

In the previous version, there were the lines serverScript, clientScript and editorScript, which defined the
start-up script for the server, client and editor parts. These scripts were always a series of _load.
Consequently, this system has been replaced by the lines serverLoad, clientLoad and editorLoad, which
are easier to use and offer the possibility of defining relative paths. However, upwards compatibility is
guaranteed.

5.2 Dms files

The Dms file represents a module tree. Each node contains a number of named definition blocks, and no
two blocks can have the same name. A definition block consists of a list of ‘name {valuel {vaue2 ...
{vaueN}...}}’ lines. The values are strings of bytes.

The site's main node is in fact the “black box” that contains the whole of the site. It contains the site€'s
global definitions (name, port, documents, etc.).

The syntax of the dmsfileis asfollows (thefileisin strextr format):

Module: :=

module name server_number
(Definition)*

(Module)*

endmod

Definition : :=
def name
(Line)*
enddef

Line::=
> name (value)*

Each leaf module contains:
- A‘dmi’ definition block containing:
- theclass (in other words the name of the dmc file)
- theevents
- theactions
- thezones
- thelist of filesit uses and which are therefore part of the site (images, textures, 3D, sound, etc),
with aview to easily “duplicating” asite from one server to another
- Alink definition block containing:
- themodul€’s outgoing links
- A definition block ‘zone' containing:
- the correspondences between zones and documents

136

Each non-leaf module contains:

- A'‘dmi’ definition block containing:
- theincoming pins(‘in’)
- theoutgoing pins (‘out’)

- A’links definition block
- thelinksleaving one of the pins

The global module (main node) that contains:
- A'def’ definition block containing:
- thesite'sglobal definitions:
- name
- port
- timeout
- A‘docserver’ definition block containing:
- thedescription of the server document
- A‘docclient’ definition block containing:
- thedescription of the client document (formerly Sccfile)

Now let us detail the fields of each definition block type.

5.3 ‘dmi’ definition block: distributed module instance

A dmi definition block describes the basic parameters of a module instance, or a black box.
In the case of a module instance we find:

name [instance name]: name of the instance

class[dmc file]: classfile

event [name]: event produced on the server

eventC [name]: event produced on the client

action [name]: action on the server

actionC [name]: action usually on the client

zone [module zone name]: alias of a zone used by the module (for the editor)

zoneC [module zone name]: alias of azone used by the client module (for the editor)
register [file 1] ... [file n]: list of the files to be saved by loading them into the memory
registerF [file 1] ... [file n]: list of the files to be saved without loading them into the memory
serverNeeded [file 1] ... [file n]: list of the files that are useful to the server, with a view to duplicating the
site on another machine.

bitmap [bitmap fil€]: bitmap to be used in the editor

Here the file names are absolute.

137

The fields defined above are standard fields. Some modules will define additional fields that are specific
to them: advertisement texts for a display banner, address of a directory for an automatic recording
module. However, a more elegant solution would be to put this specific datain different definition blocks.

Events and actions are defined either on the server or on the client, which is why there are the lines
event/eventC, action/actionC. Determining whether an event (or an action respectively) needs to be
defined in the event or the eventC line (or the action or actionC line) is very simple: everything depends
on the modul e that causes the event (resp. that processes the action), server or client.

The register and registerF lines must contain the files specific to the instance. Here it is pointless to
redeclare the files contained in the Dmc. The same comments will be made on the ‘register’ and
‘registerF filesas for the Dmc files.

The serverNeeded line is for determining the files that are useful to the site and are not aready in the
register and registerF lines.

For ablack box, the following fields will appear in the dmi definition block:
name [name]: name of the black box

in [name]: incoming pin

out [name]: outgoing pin

5.4 ‘link’ definition block

The‘link’ definition block only contains lines in the following form:

[event] [destination] [action] [param] [reply] [condition]: description of alink assigned to a module event
- Thedestination module is defined by the ‘destination’ field as follows:

- ..l parent

- .name: child

- name: sibling
Thereply parameter here is for upwards compatibility.

The conditions for links are a string intended to be used by the st r ext r function. Each line corresponds
to an activation condition: thereis alogical OR between the lines.

Each lineis made up of alist of basic conditions. Each condition corresponds to one or more words in the
line. All the basic conditions of a line must be filled in: there is a logical AND between each basic
condition.

The first word of a basic condition shows what type of condition it is, the words that follow give the
arguments.

138

There are nine conditions:
I reverse condition of therest of the line
login: does the login have a particular value (1 parameter)?
notlogin: isthe login different from a particular value (1 parameter)?
ip: doesthe IP address have a particular value (1 parameter)?
notip: isthe IP address different from a particular value (1 parameter)?
item: does the user have a particular object (the parameter is the object’ s reference)?
noitem: does the user not have a particular object (the parameter is the object’ s reference)?
items. does the user have a particular object in a particular quantity (2 parameters. object reference
and quantity)?
items. does the user not have a particular object in a particular quantity (2 parameters: object
reference and quantity)?
ActiveX: the client uses Scol in ActiveX component mode (O parameter). In this mode the browser
should not usually be started from Scol, as this would change the current page (the one that Scol is
running in), and would therefore destroy the client. It is better for the Web page to be programmed
(javascript/vbscript) to open a new frame.

5.5 ‘zone’ definition block

Thisis made up of linesin the following form:

zoneS [dmi name] [tree zone name]: correspondence between the name of a zone defined in the dmi file
and a zone defined in the scs file document tree

zoneC [dmi name] [tree zone name]: the same for a zone used by the client module

5.6 ‘def definition block

Thefollowing fields are found:

name [name]: name of the site
port [number]: server port number
timeout [time in seconds]: maximum client response time to asignal

The timeout is used to detect clients who have disconnected themselves accidentally. The TCP/IP
protocol means the timeout may last several minutes before the server detects the disappearance of a
client. Here, a signal is sent at regular intervals to al the clients. The clients simply need to reply to this
signal with another signal. When the server sends a signa, it checks that it has received the previous
signal, otherwise it disconnects the client itself.

139

5.7 ‘docclient’ and ‘docserver’ definition blocks

These definition blocks have the same syntax and define the client and server documents respectively.

doc [name] [type] [w] [h] [X] [y] [wref] [href] [bitmap]: definition of a document, possibly with a
document background image.

zone [name] [x1] [y1] [x2] [y2]: definition of a zone of the document previously defined

... recursion

enddoc: end of the document definition (compulsory)

The flags for document type are:

- DOCpopup (2):

- Indicates that the document is popup in relation to its parent document. Otherwise, the

document’ s name must be that of a zone of the parent document.
- DQOChonot (2):

- Indicates that the coordinates of the zones are homothetic in relation to the document’ s wref and
href values. If thisis not the case, the coordinates are relative to the top or left border if they are
positive, and to the bottom or right border if they are negative (for example, a horizonta value of
0 indicates the |eft border, while the value —1 indicates the right border).

- DOCtiled(4):
- Indicates that the document background bitmap must be repeated in tile form.
- DOCstretched (8):
- indicates that the document background bitmap needs to be stretched to fit into the document

A main document must be defined for each definition block: this means the ‘client’ and ‘server’
documents respectively.
To make the download bar appear, a‘download’ zone must be defined in the ‘ client’ document.

6 API

6.1 server API

1.a Structures

DM : instance of amodule
CLI ENT : client

User Touser

User | . user instance

140

Item : object from the inventory

1.b API variables

this DM : to be used at the start of several of the API’s functions
DVSsender CLI ENT : indicates the sender of an intra-module message
DMSnane S : name of the site

DVBwi n Ghj Wn . server’ s basic window

1.c API constants

1.d API functions

Modules:

S _DMSget Nane nodul e DM
Returns the short name of a module

S DMsget C ass nodul e DM
Returns the name of amodule’s Dmc file

[[Sr1] rl1] _Dwvsget Def nmodule DM nom du_bloc S
Returns a definition block associated with a module

| _DMSupdat eDef nodule DM nom du_bloc S données [[S rl1] r1]
Redefines a definition block (does not save to disk)

| _DEFsave
Savesthe site

| DMscreateCientDM nodule DM client CLIENT param S
Creates the client instance

| Dwvsdel dientDM nodule DM client CLIENT
Destroys the client instance

| _DMsSsend nmodule DM client CLIENT nessage Conmm

Sends a message to the instance of the same module on a particular client. For this message to be
interpreted, there needs to be a function with the same name in the client module, preceded by two
underscores.

141

Inter-module messages: triggering of events, direct sending of messages

| _DMsSevent this DM concerning CLIENT event S param S reply S

Activates an event by specifying a parameter and a reply. If the parameter is nil, the default parameter is
used. Thereply field should be | eft at nil.

| _DMSeventTag nodule user User event S param S others [User rl]
[call back fun[param S others [User r1]] | flag tineout]
Causes an event possibly accompanied by atag. The flag is unused.

| _DMSt agKeepAlive tag Tag
Indicates that the tag must be kept even if it is not immediately given asareply.

| _DWMst agForget tag Tag
Indicates that the tag can be forgotten.

| _DMSreplyTag tag Tag param S ot hers [User r1] hol don |
Replies to the tag by passing a parameter to it, and by indicating whether the tag should be destroyed
(holdon=0) or if it is going to be used again (holdon=1).

| _DwvsdefineActions nodule DM liste actions [[S fun [nodul e_énetteur
DM user User action S param S others [User rl] tag Tag] |] r1]

Defines a list of actions associated with callbacks. This definition is incremental: it can be called more
than once, and at any time.

| _DMSrenoveActions nodule DM actions [S r1]
Removes actions from the list.

I _DMBr egi ster (modul e DM) (cb_l ogout fun [CLI ENT] 1)
(cb_deleteclient fun [CLIENT] 1) (cb_beforeclose fun [] I)

| _DWVsregisterDM (nodule DM) (cb_action fun [from DM concerning
CLIENT action S param S reply S] 1) (cb_deleteclient fun [CLIENT] 1)
(cb_beforeclose fun [] 1)

Records the modul€e' s callbacks.

The logout function is called when a client disconnects. The module must then remove any reference to
this client.

The delete function is called when a client module is destroyed: either the module has destroyed itself, or
the client has disconnected.

The beforeclose function is called before the server module is closed, in other words before shutting down
the server.

The action callback will receive al the action messages received by the module. The new
_DMSdefineActions function makes this callback obsolete.

142

Clients:

The clients are defined by a CLIENT structure containing mainly:

- Alogin (which must be unigque).

- Thereference to the User that has been created to represent the client.

- This User is defined by an ID number that will remain unique and constant throughout the
connection.

User CtoU client CLIENT
Returns the user associated with the client.

| DwMsdel dient client CLIENT
Causes the disconnection of aclient.

S _DMsget Login client CLIENT
Returns the login of aclient.

S _DMssetLogin client CLIENT login S
Modifiesthe login of aclient.

CLI ENT _DMsbyLogin login S
Finds a client through its login.

CLI ENT _DMsbyLoginl login S
Finds a client through its login, without taking the letter case into account.

| DMsclientAlive client CLIENT
Returns 1 if the client is till active, O otherwise: a module does not keep a reference to a client that no
longer exists.

S DMsget!| P client CLIENT
Returns the |P address of aclient.

Each client has alist of variables, called resources variables. The APl can be used to define the value of
any variable.

S DMsget Ress client CLIENT ressource S
Returns a resource variable associated with a client.

S DMssetRess client CLIENT ressource S val S
Defines a resource variable associated with a client.

Users:
143

The Users are the mobile entities in the graph. They are of several types:
- client/virtual: corresponds either to a client, or aresident
- global/local: defined for everyone/only on a given client

The Users move in the graph.
The services are smple: create/destroy/read data

Each User has alist of items (this was previousy managed on the CLIENT structure, the former functions
remain valid). Thislist is an "inventory" containing objects defined by a reference, a name in clear text, a
quantity and a date.

User UcreateUser client CLIENT
Creates aglobal virtual user

| Ugetld user User
Returnsthe ID

CLI ENT Ut oC user User
Returns the client associated with the user (nil if the user is virtual)

| Uget Fl ag user User
Returns the flag associated with the user

Item | TEMcreate référence S nomen clair S quantité | date |
Creates an item

S ITEMef itemltem
Returns the reference

S | TEMhane Item
Returns the name in clear text

| _ITEMguantity Item
Returns the quantity

| Uaddltem user item
Adds an item to auser

| Usubltem user référence quantité
Deletes a particular quantity of an item from the inventory of a user.
Returns the quantity of the item that existed before this deletion (0 if the item was not in the inventory).

ltem Ufi ndltem user chal ne

144

Searches for anitemin auser’ sinventory

I Uclearltem user
Clearsall auser'sitems

Userlnstances:

Userlnstances are a service offered to each module for defining an object linked to a User and providing
concepts of distribution, communication and security.

Userlnstances are created at server or client level, but a client can only create loca instances. Instances
are created by specifying:

- amodule

- auser

- aclass

- parameters

- vishility

The concept of visibility is important: a global instance is only broadcast on clients whose instance
associated with this client (i.e., the instance associated with the User corresponding to the client) can * se€’
it.

At the moment there is only one type of visibility: by tree. Each instance is placed in atree. Visibility is

then defined by a path in a tree (the list of node names starting from the apex), and a commutativity flag.

The rulesfor visibility are asfollows.

- aninstance "sees' all the instances that are in its sub-tree (same node or descent)

- if an instance has its commutativity flag set to 1, all instances that it can see can also see this
instance.

Similarly, it is possible to isolate an instance.

The services offered for global instances are:

- automatic creation/destruction of a client instance according to the rules of visihility
- transmission of messages between these client instances and the server

- synchronization of the changing of class and parameters

Visibility is defined by its type:
Typedef Visibility :

- tree[[Sr1] flag]

- isolated (nil)

Visibility treeNew rights [S r1] commut |

145

Returns one Visibility object per tree, by specifying its position in the tree (list of node names starting
with the apex) and its commutativity flag.

[Userl r1] Uist nodul e DM
Returns the list of the userls associated with a module

Userl UcreateU nodule DM wuser User class S paraneters [[S rl1] rl]
visibility Visibility

Creates a user instance. Nil as a visibility parameter indicates zero visibility. You will usualy use
‘treeNew nil nil' to define maximum visibility (instance at the apex of the tree)

User Uget User userl Userl
Returns the associated user

DM Uget Location userl Userl
Returns the associated location

[[S r1]r1] Uget Parans userl Userl
Returns the associated parameters

[S r1] Uget Param userl Userl champ S
Returnsthe field's value

Userl UgetUserl nodule DM user User
Returns the userlnstance associated with a module and a user.

I Udel ete userl Userl
Destroys an instance

I UchgC ass userl Userl classe S parans [[S r1] r1]
Changes the class of a Userl. This will be transmitted to clients that can see the instance and will cause
the calling of the callback defined by UcbChanged.

| UsetVisibility userl Userl visibilité Visibility
Changes the rights of a Userl. In general this implies a certain number of Userl creation/destruction
commands on the client modules.

| Uset Paranms userl Userl paranms [[S r1] r1]
Changes al the parameters. This will be transmitted to clients that can see the instance and will cause the
calling of the callback defined by UcbChanged.

| Uset Param userl Userl chanmp S param[S r1]
Changes a field. This will be transmitted to clients that can see the instance and will cause the calling of
the callback defined by UcbChanged.

146

Userl UcbC ientDestroyed ui Userl callback fun [Userl CLIENT] I
Defines a callback to be informed of the destruction of an instance on a specific client.

Userl UcbDel ete ui Userl callback fun [Userl] I
Defines a callback to be informed of the destruction of an instance. On the server, this generally occurs
when a client disconnects: its userls are destroyed.

Userl UcbMessage ui Userl liste de nmessages [[S callback fun [Userl
CLIENT S S] 1] r1]

Defines callbacks on the receipt of messages. These callbacks are ssimply concatenated with the list
present and may mask previous definitions

Userl UrenoveMessage ui Userl nessage S
Removes a callback on a message.

| UsendMessage ui Userl client CLIENT action S param S
Sends amessage to aclient. If the client is nil, the message is sent to all the client instances.

Zone management:
[CojWn I I | 1] _DwMsgetZone (this DM, zone S, conflict fun [zone
S] I, resize fun [coord [win CbjWn x | y I w1l h I] zone § I,

destroy fun [zone §] I)

Requests a zone (the name to be passed is that of the zone defined in the dmi definition blocks).

The conflict callback is activated when the zone is requested by another module. The resize callback is
activated when the zone has changed size. The function returns nil if the zone is not associated, and a
tuple (main window, X, y, length, height) in the opposite case.

| _DMbrel easeZone (this DM, zone S)
Releases a zone (the name to be passed is that of the zone defined in the dmi definition blocks).

Management of documents downloadable by the clients:

I _RSregister (this DM, nane S, type |, docunent S)

Saves the document under a particular name, with a specific 'this' owner. If the type equas O, the
document parameter is the document itself. If the type equals 1, the document parameter is the name of
the document file. Transfers will be made from file to memory, without compression.

Returns 0 if OK, -1 if thereis an error (document empty or already saved).

I _RSregistersafe (this DM, nanme S, type |, docunent S)
The same as above, but the document will only be accessible to authorized clients.

147

| _RSregisterfiles(this DM, files [S r1], type I)
Records alist of files: the name of each document is the name of thefile.

| _RSunregister (this DM, name S)
Withdraws a document

I RSallowdient (this DM, client CLIENT, name S)
Gives a client authorization to download a document saved using the function _RSregistersafe

| _DMscbUpl oad module DM cal I back fun [CLIENT S S] |

Defines a document receipt callback (_ DM Supload function of the client Api). The callback is called
when receipt is complete with the following as arguments: client who sent document, name of the
document, content.

Localization functions:

The Dms architecture integrates a localization kit used to display text messages in different languages.
The messages are stored in resource files.

For each module, one resource file per language must be created.
The resource files thus created must be put in a/module lang subdirectory.
The files will respect the following syntax:
- the name of the file takes the name of the module (name of the .dmc file without its extension)
- afirst extension indicates the name of the language of the resourcefile
(language in English, example: .english, .french,...)
- asecond extension, .lang, identifies the resource files.

Example of resource file name: test.english.lang

Each line of the resource file corresponds to a reference and to the translation of the corresponding
message in the language specified in the file's name.

Thelocalization kit is also used to manage messages with parameters.

The downloading of files from the server to the clientsis automatic.

The client retrieves the files in the language of its SCOL Engine.

When it changes language, the files corresponding to the new language are automatically downloaded.

On the client, the resource files are stored in the form NameOfModule.lang directly in the module’'s
directory.

148

* RESOURCE FILE SYNTAX:

If you wish to insert comments begin the line with #.

The references are accessible by default both on the client and the server side. To make the references
accessible only on the client side, start the name of the reference with an asterisk (do not use the asterisk
when the localization function is called, this is automatically removed when the files are loaded into the
memory).

Within amessage, \n isused for the carriage return.

Spaces at the beginning of a message, at the end of a message or two or more spaces in succession will
not be taken into account. Y ou can use \[space] as a solution to this but it is better to add spaces directly
into the program code, as this stops them from being overlooked when the resource files are trand ated.

Parameters are defined using the syntax <#no:text>

- no is an integer representing the number of the parameter (which starts at 0)

- text is a character string used to specify the nature of the parameter (this string should not contain any
spaces. use _ for example as a separator).
This makes it possible to insert one parameter several times. The parameters can be inserted in any order.

* SERVER API:

S _loc nodule DM reference S paraneters [S r1]]

Localizes the server in the language of the server Scol Engine.

Returns the reference’s localization (function’s 2™ parameter) with parameters inserted (function’s 3rd
parameter).

S locdi nmodule DM client CLIENT reference S paraneters [S r1]

Used to send the client of areference localized in its language (the language of the client’s Scol Engine if
available, if not the language of the server’s Scol Engine)

Returns the reference’s localization (function’s 3rd parameter) with parameters inserted (function’s 4th
parameter). If the reference does not exist in the language of the client, it returns the reference translated
in the language of the server.

S locdiEx nodule DM | anguage S reference S paraneters [S rl]

The same as _locCli, but the language of the client is specified. For example, to send e-mailsto aclient in
its language while it is not connected, the language of the client is specified (function’s 2nd parameter) by
retrieving it from a server database. Returns the reference’ s localization (function’s 3rd parameter) with
parameters inserted (function’s 4th parameter). If the reference does not exist in the language of the
client, it returns the reference translated in the language of the server.

| _locAddRef nodule DM |anguage S référence S content S
Used to dynamically add a reference to be localized (function’s 3rd parameter) with its content
(function’ s 4th parameter) for a given language (2nd parameter). Returns 1 if added, O if not.

149

I _locDel Ref nodule DM | anguage S reference S
Deletes a reference (function’s 3rd parameter) dynamically for a given language (function’s 2nd
parameter). Returns 1 if deleted, O if not.

| _DMSreinitLoc nodul e DM
Dynamically reloads the localization files on the server and on clients that are connected.

In the event of an error, the functions return:
- "I'ERR_REF!!" when the reference does not exist
- "I'"ERR_PARAM!!" when a parameter is missing

Other services:

| _DMBtine
Returns the time of the server

| _DWMSstickcount
Returns the tickcount value of the server

| _DMsservice client CLIENT nessage S
Sends a service message to a client. This message appears in a dialog box.

Cbj Font Font
Site'smain font.

S DMSpat h
Dmsfile path

S DMsSgetpath nomfichier S
Returns the path of afile name

[Srl] _Dwvsrelativpath path S liste fichiers [S rl]
From a default path and a list of possibly related files (the names of which start with ./), the function
returns a list of absolute file names.

S _adderror nessage S
Adds an error message to the logbook. If this occurs when the server is started, the server will stop as
soon asthe initialization of each module is complete.

S _addwarni ng nessage S
Adds awarning message to the logbook

S _| ogBook
150

Returns the content of the logbook

1.e Functions to be defined in the module

IniDM (paramS)
Function called when the instance is initialized. The parameter that was previously the name of the Dmi
fileis no longer used.

6.2. Client API

2.a Structures

DM : module instance
User T user

User | . user instance
RSC : download request

2.b APl variables

this DM : current instance

DMSnane S : site name

DVBwi n Cbj Wn : basic server window

DVSI ogi n S : client login

DvSi d : client 1D number (constant index throughout the connection period)

I
DMBactiveX | : hasthevalue 1 if the client isan ActiveX (or a Netscape plug-in)

2.c API constants

USER_global
USER client
USER_changeClass
USER_changeParam
USER_changeAll

2.d API functions

151

S _DMsget Nanme nodul e DM
Returns the short name of a module.

S _DMsget d ass nodul e DM
Returns the name of amodul€e’ s dmc file.

| _DMsdel ete nodul e DM
Auto destruction of the client module.

| _DMSsend this DM message Com
Sends a message to the instance of the same module on a specific client.

Inter-module messages: event triggering, direct sending of messages

| _DMSevent this DM event S param S reply S

Activates an event by specifying a parameter and a reply. If the parameter has the value nil, the default
parameter is used. The reply field should be l€eft at nil.

| _DMseventTag nmodule event S param S others [User r1] [callback
fun[param S others [User r1]] | flag tineout]
Causes an event, possibly accompanied by atag. The flag is unused.

| _DMSt agKeepAlive tag Tag
Indicates that the tag must be kept even if it is not immediately given asareply.

| _DWMst agForget tag Tag
Indicates that the tag can be forgotten.

| _DMSreplyTag tag Tag param S others [User r1] hol don |
Replies to the tag by passing it a parameter, and indicating if the tag must be destroyed (holdon=0) or if it
is going to be used again (holdon=1).

| _DwvsdefineActions nodule DM liste _actions [[S fun [nodul e_énetteur
DM action S param S others [User rl1l] tag Tag] |] r1]

Defines a list of actions associated with callbacks. This definition is incremental: it can be called more
than once and at any time.

| _DMSrenoveActions nodule DM actions [S r1]
Removes actions from the list.

| _DWMsregister (nodule DM) (cb_beforeclose fun [] |)
| _DvbregisterDM (nodule DM) (cb_action fun [from DM action S param
Sreply S] 1) (cb_beforeclose fun [] I)

Saves the modul €' s callbacks.
152

The beforeclose function is called before the server module is closed, in other words before the server is
shut down.

The action callback will receive al the action messages received by the module. The new
_DMSdefineActions function makes this callback obsolete.

Users:

User Ucreat eUser
Creates alocal virtual user.

I Ugetld user User
Returnsthe ID

I Uget Fl ag user User

Returns the flag associated with the user: thisis a combination of the following two constants:
USER_global: global user (as opposed to local)

USER_client: client user (as opposed to virtual)

Userlnstances.

[Userl r1] Uist nodule DM
Returns the list of the userls associated with a module.

Userl UcreateU nodule DM user User class S paraneters [[S r1] r1]
Creates an instance for alocal User (thisis not widely used).

User Uget User userl User|
Returns the associated user.

DM Uget Location userl Userl
Returns the associated location.

[[S r1]r1] Uget Parans userl Userl
Returns the associated parameters.

[S r1] Uget Param userl Userl champ S
Returnsthe field value.

Userl UgetUserl nodule DM user User
Returns the userlnstance associated with a module and a user.

| Udel ete userl Userl
Destroys alocal instance.

153

I UchgC ass userl Userl classe S parans [[S r1] r1]
Changes alocal Userl’s class.

| Uset Paranms userl Userl paranms [[S r1] r1]
Changes all the parameters of alocal instance.

| Uset Param userl Userl chanmp S param[S r1]
Changes aloca instance field.

Userl UcbDel ete ui Userl callback fun [Userl] I
Defines a callback to be informed of the destruction of an instance. This generally occurs when the server
has called the Udelete function.

Userl UcbMessage ui Userl liste_de nessages [[S callback fun [ui UWserl
action S param S] 1] r1]
Defines callbacks on receipts of messages. These callbacks are simply concatenated with the list present
and may mask previous definitions.

Userl UrenoveMessage ui Userl nessage S
Removes a callback on a message.

| UsendMessage ui Userl action S param S
Sends a message to the server instance.

| UcbCreate nodul e callback fun [ui Userl] |
Callback signaling the creation of a global instance on aclient.

| UcbChanged ui callback fun [ui Userl flag | valeur S] |

Cdllback signaling a change of class/parameter for a globa instance. The flag can take the following
values:

USER_changeClass: the class has changed

USER_changeParam: at least one parameter has changed (if only one parameter, its name is in the value
field, otherwise the value field has the value nil)

USER_changeAll: equals USER_changeClass | USER_changeParam

Zone management:

[CojWn I I | 1] _DMsgetZone (this DM, zone S, conflict fun [zone
S] I, resize fun [coord [win X y w h] zone S] |, destroy fun [zone §]
1)

Requests a zone (the name to be passed is that of the zone defined in the dmi file).

154

The conflict callback is activated if the zone is requested by another module. The resize callback is
activated if the zone has changed size.

| _DWMSrel easeZone (this DM, zone S)
Releases a zone (the name to be passed is that of the zone defined in the dmi file).

Resource download management:

RSC _RSCdownl oad nodul e nom fichier callback fun[S] | salve
RSC _RSCdownl oadP nodul e nom fichier callback fun[S] | salve priorité
I

Requests the downloading of a resource by giving its name, the file in which the resource must be stored
and the callback when the download has finished. The priority parameter indicates a download command:
0 priority requests come first.

The salve parameter is obsolete.

If the file is aready there, with the right signature, the callback can be caled synchronously. The
_RSCdownload and _RSCdownloadP functions return:

- nil if the callback has been called,

- otherwise an RSC object: the download isin progress. It is possible to abort it.

If the name's value is nil, it is a synchronization download whose callback will be called when all the
downloads previously requested (and of lower priority) have been carried out.

If the file's value is nil, the resource is till downloaded, is not stored on disk and is passed to the
callback, whereas otherwise it is the name of the file that is passed to the callback (nil if download is
impossible).

I _RSCabort nodul e ressource RSC
Aborts the downloading of aresource.

I _RSCabortDM nodul e
Aborts the downloads in progress for amodule

| _DMsupl oad nodul e DM nom docunent S contenu S callback fun [I] |
Sends a document to the server by specifying a name and a content. The callback is called once the
operation is completed (the argument has avalue 1 if successful, O if not). This occursviathe HTTP
protocol (POST request)

155

Localization functions:

S loc nodule DM reference S paraneters [S rl]

Used to localize the client in the language of the client Scol Engine (the server Scol Engine language if
the client’s language is non-existent). Returns the reference’s localization (function’s 2™ parameter) with
inserted parameters (function’s 3 parameter).

In the event of an error, the functions return:
- "I'ERR_REF!!" when the reference does not exist
- "I'ERR_PARAM!!" when a parameter is missing

Other services:

| _DMStine
Returns the server time (approximation)

| _DMStickcount
Returns the server’ s tickcount value (approximation)

bj Font Font
Site’'smain font

bj Cursor St dCursor
Standard cursor

bj Cur sor HandCur sor
Hand cursor

bj Cur sor CrossCursor
Cross cursor

S DMsgetpath nom fichier S
Returns a file name path

[Srl] _Dvbrelativpath path Sliste fichiers [S r1]

From a default path and alist of possibly related files (whose names start with ./), the function returns a
list of names of absolute files.

2.e Functions to be defined in the module

I ni DM (param S)
Function called when the instance isinitialized. The parameter isthat sent by DM ScreateClientDMI.

156

6.3. Editor API

Writing a module editor is not very complicated: remember that the only purpose of a module editor is to

create definition blocks (at least one "dmi" block).

You will use a library called 'templateEdit1l' which offers a smple APl and a clean and homogeneous

graphic interface:
You must definethe | ni Edi t or which will be the editor's initialization function

From the start this function will call the startEditor function with the appropriate parameters, and in

particular the definition of two callbacks:

- | oad: callback called when the module is loaded. This function has access to the current values
of the modul€’ s definition blocks
- save: calback caled when saving takes place and which much define the new definition

blocks.

The IniEditor function will then initialize the graphic interfaces specific to the module.
Lastly it will finish by calling the openDMI function which will call thel oad callback.

This API is detailed below:

3.a Callable functions

Editor startEditor

Chn channel

ObjWin parent

I X

Iy

I w

I h

I winflag

| flag

S__

S class

S_help

S _icone

fun [[[Sr1] r1]] | load
fun [SS] [[Sr1] r1] save

[

/* main window left bound */
/* main window upper bound */
* edit window width */
* edit window height */
/* main window flags */
[* flags for toolbar, statusbar, ... */
/* unused */
[* classfile*/
/* help file*/
[* default icon file*/
* load callback */
[* save callback */

[[[1 Sfun [ObjMenultem Editor] 1] r1] [[I Sfun[ObjMenultem Editor] 1] r1]]
[[[1 Sfun [ObjMenultem Editor] 1] r1] [[I Sfun [ObjMenultem Editor] 1] r1]]

[[S[ObjMenu r1]] r1]
] additional menus

/* additional menus*/
157

Starts the "template editor" with the size of the modul€e’'s editing zone and the two callbacks, load and
save, as main parameters:

- load callback: receivesthe "Dmi" definition block as a parameter

- savecallback: must return the "Dmi" definition block

The function returns an Editor type object.

Cbj Wn getEditWn editor Editor

Returns the child window of the editor in which the interface for the class can be displayed. From this
object, it is easy to obtain the client size and define a callback to resize the editor.

| setEditorStatus editor Editor nessage S

Used to display messages in the editor status bar. This assumes that the corresponding flag was positioned
when startEditor was called.

| openDM editor Editor
L oads the module, calling in particular the load callback.

[[S r1] rl] getDef editor Editor nanme_of bl ock S
This function will typically be called in the load callback, to read definition blocks other than the "Dmi*"
block.

| setDef editor Editor name_of_block S content [[S r1] r1]
This function will typically be called in the save callback to define definition blocks other than the
"Dmi"block.

S _locEditor reference S paranmeters [S rl]

Used to localize the editor in the language of the Scol Engine. Returns the reference’s localization
(function’s 2™ parameter) with inserted parameters (function's 3" parameter).

3.b Functions to be defined

I ni Edi t or (param S)
Function called when the editor is started. The parameter is no longer used.

7. Example 1 : module running only on the server.

The following example is of a module that manages an automaton able to receive messages, analyze them
and reply to them. Usually, this automaton is used by connecting it on a chat cell: the automaton "hears"
and can reply either to asingle user or to all of them.

158

Filee Dms/Bots/Bot0/bot0.dmc

name Bot

server Needed ./ bot 0. pkg

server Load ./bot 0. pkg

edi t or Needed Dns/L/tenpl ateEdit 0102. pkg | ocked/lib/_mistlib001l. pkg
| ocked/ | i b/ ent er box. pkg ./ botOedit. pkg

editorLoad Dns/L/tenpl ateEdit0102. pkg | ocked/lib/_mistlib001l. pkg

| ocked/ |'i b/ ent er box. pkg ./bot Oedi t. pkg

bi t map Dms/ Bot s/ Bot 0/ bot 0. brp

tree Dns/ Bots/Bot0/botO.tree. bnp

version 1 2

File: Dms/Bots/Bot0/bot0.pkg

/* BotO - DV5 - May 98 - by Sylvain HUET */
/* Mar 00 update */

[* >>>>> PLEASE DO NOT CHANGE THE FOLLOWN NG FONCTI ONS */

fun broad(text)=_DMSeventTag this nil "broad" text nil nil;

fun private(u,text)= DVSeventTag this u "private" text nil nil;
fun user(event,u,text)= DMSeventTag this u event text nil nil;

[* >>>>> PLEASE | NSERT ONLY HERE YOUR OWN CODE */

/* this function is called when someone says sonet hi ng
-u is the visitor who has spoken
-text is the text the visitor said

*/

fun hear_bot (fromu,action,text,ulist,tag)=
if !'strcnmp text "foo" then

(private u "<Bot> bar\n";

0)

else if Istrcnp text "tinme" then

(broad strcat "<Bot> " ctinme tineg;

0)

else let hd strextr text ->1 in

if I'strcnp hd | "square"” then

(let atoi hd tl | -> x in broad strcat "<Bot> " itoa x*X;
0)

else nil;

/* this function is called when soneone is in

159

-u is the visitor who got in

*/

fun in_bot(fromu,action, paramulist,tag)=

broad strcat "<Bot> Hello " _DMSgetLogin UtoC u;

private u "<Bot> You can ask nme for the time or to cal cul ate integer
squares : type 'tinme' or 'square 4'\n";;

/* this function is called when soneone is out

-u is the visitor who got out

*/

fun out _bot(fromu, action, paramulist,tag)=

broad strcat "<Bot> Good bye " _DMsgetLogin U oC u;;

[* >>>>> PLEASE DO NOT CHANGE THE FOLLOW NG CODE */

fun IniDM (file)=

_DMsregister this nil nil nil;

_DwvsdefineActions this ["in" @n_bot]::["out"” @ut_bot]::["hear”
@near _bot]::nil;;

File: Dms/Bots/Bot0/botOedit.pkg

/* Bot Editor - DMS - May 98 - by Sylvain HUET */
/* Rev. Aug. '98 - by Marc BARILLEY */

typeof ed=Editor;;

typeof bannerl | =Cbj Text; ;
typeof |1l =QbjList;;

typeof addll= ObjButton;;
typeof delll = CbjButton;;
typeof links=[S r1];;

fun updatel 2(s, b)=
_ADDIist Il 1000 s;;

fun updatel ()=
_RSTlist I1;
apply_on_list links @pdatel 2 0;;

fun addr(s)=
if s==nil then nil

160

el se
(set links=conc links s::nil;
updatel);;

fun _add(a, b)=
i ni Ent er Box _channel ed.EditorEditWn nil nil "New Event" @ddr
"Enter a new event nane" ;;

fun _rem(x,b)=

let GETlist Il ->[i _] in

let nth_list linksi ->ain

if a==nil then nil else

(set links=renove fromlist |inks a;
updatel);;

fun fdlink(a,b)=
if strcnp hd a "botevent” then O
el se (set links=conc links (hd tl a)::nil; 0);;

fun load (I) =
set links=nil;
apply_on_list | @dlink O;
updat el ;
0;;

fun suppevent(l)=

if I==nil then nil

else let I->[an] in
("botevent"::a::nil)::("event"::a::nil)::suppevent n;;

fun save (filenane, n)=

("action"::"in"::nil)::
("action"::"out"::nil)::
("action"::"hear"::nil)::
("event"::"broad"::nil)::
("event"::"private"::nil)::

suppevent |inks;;

fun rfl SizeEditWn (wn, blurp, w, h)=
_SI ZEt ext bannerl| ed. EditorWeditWn-10 20 5 5;
_SIZElist |l ed.EditorWedi t Wn-10 ed. Editor HEdi t Wn-50 5 25;
_ Sl ZEbutton addll 45 20 5 ed. Edi t or HEdi t W n- 25;
_SlIZEbutton delll 45 20 70 ed. Edi t or HEdi t W n- 25; ;

161

fun Ini Editor(s)=
set ed=startEditor
_channel nil 0 0 315 340 WN_NORMAL- WN_SI ZEBOX EDI TOR_NORMAL
s " Dms/ Bot s/ Bot 0/ bot 0. dnt" " Dns/ Bot s/ Bot 0/ hel p. t xt"
" Drs/ Bot s/ Bot 0/ bot 0. bnp”
@ oad @ave nil;

_CBwi nSi ze ed.editWn @fl Si zeEditWn O;

set bannerll = CRtext _channel ed.editWn 5 5 ed. wedi tWn-10 20
ET_ALI GN_CENTER "New events :";

set Il = CRist channel ed.editWn 5 25 ed. wkdi t Wn-10
ed. hEdi t Wn-50 LB _DOWA+LB_VSCROLL;

set addll = _CBbutton _CRbutton _channel ed.editWn 5 ed. hEditW n-25
45 20 0 "Add" @add O;

set delll = CBbutton CRbutton _channel ed.editWn 70 ed. hEditW n-

25 45 20 0 "Renove" @rem O;
if s==nil then nil else openDM ed;
0;;

This exampleis deliberately simple.

The Dmc file holds no surprises, it corresponds point for point with what was explained during the
description of the Dmc format. Y ou simply need to take note of which files are used by the module and
how the scripts are defined.

The bot0.pkg file is at the heart of the program: it works on the server. The IniDmi function simply
defines the callbacks on the three actions the module recognizes: in, out and hear:

- in: thisentry informs the robot that someone has just arrived

- out: this entry informs the robot that someone has just |eft

- hear: thisentry informs the robot that a message has just been "heard"

The module consequently calls three functions, in_bot, out_bot and hear_bot. The idea is this: if the bot
module is correctly connected, the in_bot function will be called each time a visitor enters the world; the
out_bot function will be called each time a visitor leaves the world; the hear_bot function will be called
each time avisitor says something.

These three functions have a User-type u argument. To retrieve a user’s name, you will convert the User
into CLIENT with the CtoU function and you will use the _DMSgetLogin function, which takes a
CLIENT-type as an argument and returns a character string type (see server APl)

In the hear_bot function, the text heard is passed in the ‘text’ argument. To split this argument into words
for a syntactic analysis, you simply apply the two ‘hd strextr’ functions to it. The result is a list of

162

character strings (type [S r1]). To anayze this list, you use the classic functions hd and tl. You can also
use the nth_list function (see standard library).

The module defines three functions:

B broad: sends amessage to al users

B private: sends a message to asingle user
W user: triggers an event concerning a user

Y ou can practice by modifying the code of thein_bot, out_bot and hear_bot functions.

The botOedit.pkg file illustrates how to define an editor based on functions predefined in the
Drs/ L/ t enpl at eEdi t 0102. pkg file. In this already complex editor example, it is a question of
offering to the user the possibility of creating new events. The important function is st art Edi t or.
This function creates the editor’s standard window (edi t W n variable), with the File menu, icons, etc.
As an argument you give it the name of the Dmc file, the name of the help file and the default bitmap,
then two callbacks, load and save. The load callback is called when the Dmi file is loaded: it takes as an
argument the content of the Dmi file to which you have already applied the st rextr function. The
argument’stypeistherefore[[S r1] r1].

The save callback is called when the Dmi file is saved. It must return a sequence of lines describing the
events, the actions, the zones, and the specific parameters of the module. This result must bethe [[S
ri] r1] type

start Editor

_channel nil 0 0 315 340 NORVMAL

s "Dns/ Bot s/ Bot 0/ bot 0. dnt" " Drs/ Bot s/ Bot O/ hel p. t xt"
" Dirs/ Bot s/ Bot 0/ bot 0. brp"

@ oad @ave;

The rest of the botOedit.pkg file manages a list type graphic object, as well as 2 buttons. For this you can
use thewEdi t W n and hEdi t W n variables, which give the dimensions of edi t W n.

Exercises:

B quicksort: ask the robot to sort aword list

B calculator: rather than calculating a square number, take an arithmetical expression (in reverse polish
notation to make it simpler)

B guide: ask the bot to teleport you somewhere

B good manners: automatically teleport a visitor who has said ‘ shit’ to jail

B successfully take the Turing test.

oo

. Example 2: distributed module and zone management

163

The following example is a distributed module. It defines a button on the interface of the client and/or
server.

File: Dmgd/Inter f/Button/button.dmc

name Button

regi ster ./buttonc. pkg

server Needed

serverLoad ./buttons. pkg

cl i ent Needed

clientLoad ./buttonc. pkg

edi t or Needed Dns/L/tenpl ateEdit 0102. pkg ./ buttonedit. pkg
editorLoad Dms/ L/tenpl at eEdi t 0102. pkg ./ buttonedit. pkg
bitmap ./button. bnmp

tree ./button.tree. bnp

version 2 1

File: Dmg/Interf/Button/buttons.dmc
/[* Button Server - DM5S - march 98 - by Sylvain HUET */
/* Rev. 0101 - Aug. '98 - by Marc BARI LLEY */

fun start(fromu, action, paramulist,tag)=
if DMscreateClientDM this UtoC u nil then
_DWVsevent Tag this u "started" nil nil nil
el se nil;;

fun end(fromu, action,paramulist,tag)=
if DwvsdelClientDM this UoC u then
_DWMsevent Tag this u "ended" nil nil nil
el se nil;;
fun IniDM (file)=
_DWMsregister this nil nil nil;
_DwvsdefineActions this ["start” @tart]::["end” @nd]::nil;;
File: Dmg/I nterf/Button/buttonc.dmc
/[* Button Client - DM5 - March 98 - by Sylvain HUET */
/* Rev. 0101 - Aug. '98 - by Marc BARILLEY */
typeof button=0bj Button;;
fun pressbut(a,b)= _DMseventTag this "click™ nil nil nil;;
fun _end(s)=

164

_DwVsdel ete this;;

fun _resizel(x,s)=
let x->[win xy wh] in _SIZEbutton button w h x vy;
0;;

fun I ni DM (param =

|l et DMSgetZone this "Button” @end @resizel @end ->[win x y w h]
in

if win==nil then nil else

set button=_CBbutton _CRbutton _channel win x y w h 0 _DMsget Nare
this @ressbhut O

File: Dmg/Inter f/Button/buttonedit.dmc
/[* Button Editor - DM5S - Mar 98 - by Sylvain HUET */
/* Rev. Aug. '98 - by Marc BARILLEY */

typeof ed=Editor;;
fun save (filenane, n)=

("action"::"start"::nil)::
("action"::"end"::nil)::
("eventC'::"click"::nil)::
("event"::"started"::nil)::
("event"::"ended"::nil)::
("zoneC'::"Button"::nil)::
nil;;

fun Ini Editor(s)=
set ed=startEditor
_channel nil 0 0 315 125 WN_NORMAL- WN_SI ZEBOX EDI TOR_NORMAL s

"Ds/ I nterf/Button/button.dnc” "Dns/Interf/Button/help.txt”
"Dmrs/ | nt erf/Button/button. bnp"

nil @ave nil;

if s==nil then nil el se openDM ed;

0;;

Note two important elements in the buttons.pkg file:

- the use of zones in the IniDMI function. _DMSgetZone this "Button' @ end

@resizel @end
- thecreation and destruction of the client module in the server’s start and end functions.

Also note the editor’ s minimal form: the editor does not actually need a specific user interface.

165

9. Example 3: distributed module and intra-module message

The following example is a module capable of asking the user a question in the form of a message box.
We are particularly interested in the exchange of messages between the client module and the server
module.

File: Dms/ToolgQuizz/quizz.dmc

name QUi zz

register ./quizzc. pkg

server Needed

serverLoad ./ quizzs. pkg

cl i ent Needed

clientLoad ./quizzc. pkg

edi t or Needed Dns/L/tenpl at eEdi t 0102. pkg ./ qui zzedi t. pkg
edi torLoad Dms/ L/tenpl at eEdi t 0102. pkg ./ qui zzedi t. pkg
bitmap ./ quizz. bnp

tree ./quizz.tree. bnp

version 2 1

File: Dms/Tools/Quizz/quizzs.pkg
[* Quizz Server - DM5 - march 98 - by Sylvain HUET */

def com Cqui zz=qui zz S |;
struct Q=[cli Qz: CLIENT, txtQz: S, numQz: 1] nkQz; ;

typeof quizz=[S rl1];;
typeof qu=[Q r1];;

fun byboth(a,z)=let z->[c i] in c==a.cli @ && i==a.nunmz; ;
fun __answer(i,yes)=
l et search_in_list qu @yboth [DMSsender i] -> x in
if x==nil then nil
el se
(set qu=renove_fromlist qu Xx;
_DMSevent this DMSsender strcat if yes then "yes" else "no" itoa i
nil nil);;
fun renmovecli(l,c)=

if l==nil then nil else let |->a n] in
if a.cliQ==c then renovecli n c else a::renovecli n c;

fun | ogout(cli)=

166

set qu=renovecli qu cli;

0;1

fun in(fromu,action, paramulist,tag,i)=

let UoCu->cli in

let if i==nil then paramelse nth_list quizz i -> txt in

(_DvscreatedientDM this cli nil;
_DMssend this cli Cquizz [txt i];
set qu=(nkQz[cli txt i])::qu;
0):;

fun getQuizz(l,i)=

if I==nil then nil

else let I->[gn] in

if I'strcnp hd q "quizz" then

(_DwvedefineActions this [strcat "in" itoa i nkfun7 @n i]::nil;
(hd tI q)::getQuizz n i+1)

else getQuizz ni;;

fun IniDM (file)=
let DMSgetDef this "dm" ->I in
(set quizz=getQuizz | 0);
_DMsregister this nil @ogout nil;
_DwvsdefineActions this ["in" nkfun7 @n nil]::nil;;

File: Dmg/T ools/Quizz/quizzc.pkg
[* Quizz Client - DM5 - March 97 - by Sylvain HUET */

def com Canswer =answer | 1|;;
fun | ni DM (par am =0; ;

fun res(x,i,r)=
_DMBsend this Canswer [i r];;

fun __quizz(s,i)=
_DLG fl nessage _DLGWVessageBox _channel DVBwin "Question" s 2 @es
[

File: Dms/Tools/Quizz/quizzedit.pkg
/* Quizz Editor - DVS - feb 98 - by Sylvain HUET */

typeof ed=Editor;;
typeof quizz=tab Obj Text;;

167

fun onequi zz(i,x)=
_CRtext _channel editWn 5 25+i *25 10 20 ET_ALI GN_CENTER itoa i
_CReditLine _channel editWn 20 25+ *25 290 20 ET_DOAMHET_AHSCROLL

fun createQuizz()=
set quizz=create_tab 8 @nequizz O;

fun getQuizz(l)=
if I==nil then nil
else let I->[qn] in
if I'strcnp hd g "quizz" then (hd tl q)::getQuizz n
el se getQuizz n;

fun setQuizz(l,i)=
if I==nil || i>=8 then O
else let I->an] in
(_SETtext quizz.i a;
setQuizz n i+1);;

/* SCS editor */
fun load (I) =
set Qui zz getQui zz | O;

fun get Text(i)=

if i==8 then nil
el se
("action"::(strcat "in" itoai)::nil):
("event"::(strcat "yes" itoa i)::nil)::
("event"::(strcat "no" itoai)::nil)::
("quizz"::(_CETtext quizz.i)::nil)::getText i+1;
fun save (filenanme, n)=
("action"::"in"::nil):
("event"::"yes"::nil):
("event"::"no"::nil)::
get Text O;;

fun Ini Editor(s)=
set ed=startEditor
_channel nil 0 0 315 355 NORMAL
s "Dms/ Tool s/ Qui zz/ qui zz. dnt" " Dms/ Tool s/ Qui zz/ hel p. txt™
"Drs/ Tool s/ Qui zz/ qui zz. bnmp"

168

@ oad @ave;
_CRtext _channel editWn 20 5 290 20 ET_ALI GN_CENTER "Pronpt";
createQui zz;
if s==nil then nil else openDM ed;
0;;

In this example, the server module sends a message to the client module containing the text of the
question as well as a question identifier:

_DMssend this cli Cquizz [txt i];
The message is created from the Cquizz communication constructor, defined by:

def com Cqui zz=quizz S | ;;

When the client module receives it, it executesthe qui z function. This opens a dialog box with the
question’s text. When the user replies, the res function is called and transmits the following reply to the
Server:

_DMBsend this Canswer [i r];;
The server subsequently executes the __answer function, in which the CLIENT-type variable
DMBSsender containsthe client that sent the message.

10. C3d3 Module and plug-ins

The C3d module is avery important one: it is capable of managing a 3D space containing animated
avatars and objects; it is therefore the most visible module.

It goes without saying that this module manages a 3D scene, but it also offers a system of plug-inswhich
alows the developer to easily interface new functionalitiesin the 3D space. This mechanism is based on
the system of Users and Userlnstances described previously:

- Each of the site’s functionalities will be considered as a User:
- for an object that is turning, you need to imagine that there isa virtual User in the scene whose
only role isto make the object turn. This User’s parameters are defined by:
- theobject to be turned
- thevaues of thisrotation (axis, speed, etc.)
- Thereistherefore one client User per avatar, and one virtual User per functionality
- Sothat it can use each of these Users, the C3d3 module defines one Userlnstance per User. A
Userlnstance is defined by:
- aUser
- aname
- aclass
- various parameters
- vishility
Y ou will use the classto define the functionality: Avatar, rotation, etc.

169

The C3d3 module therefore manages a list of Userlnstances of different classes. For each classthereisa
different type of process; a developer must be able to add a new class easily, with anew process. The
concept of the C3d3 plug-inisintroduced for this purpose: a C3d3 plug-in isasmall program (with a
server and/or client part) that manages the operation of a class.

Below we shall define the Ob structure, which is a superclass of Userlnstances, and explain how to
develop aplug-in.

1. Ob structure

The basic structure of the C3d3 module is the Ob structure. It represents an "object" in the sense of object
programming: in other words an instance of a particular class.

The Ob structure can be used to describe:

- avatars

- variousfunctionalities

The Ob structure is actually a superclass of the Userl structure, and therefore benefits from the
mechanism of Users. Typicaly, avatar Obs will be client User Userlnstances, while functionality Obs will
be virtual User UserInstances.

When aclient enters the module, a Userlnstance is created with:

- for the class, its standby value (which will have been previously defined by the ObSetClass function)

- for the name, the client’slogin

When the server is started, the instances that are already present (defined in the editor) are created with:

- theclassindicated in the editor

- thenameindicated in the editor

- the parameters defined in the editor with two additional lines: name and anchor (such asthey are
described in the editor)

The C3d3 integrates the management of the User system’svisibility.
Instances other than avatars are always created at the tree’ s root with the commutativity flag at 1.
The C3d3 module determines the avatar’ s rights in the following way:
- Inthe C3d3 editor (advanced menu) you define the resource variable managing rights.
- When the avatar is created, you read this resource variable, which must have the following format:
- Format strbuild : ((itoa commut) : :rights: :nil) : :nil
Where the rights parameter is an a.b.c (the point is the separator) type path. The empty string corresponds
to the apex of the tree. (a.b.c isthe child of a.b).
Tests represent a particular case: if you define the resource variable that manages rights as *altern’ in the
C3d3 editor, the avatars will be successively placed inthe” 0" path and the” 1 ”path.

170

Several parameters define the object:
a.ontheserver

- the Userlnstance (and therefore the class, the parameters, and callbacks for communication with the
UserClass module and with the client Userlnstances)

- thename

- adestruction callback

- theobject’s current position (x,y,z)(ab,c), where thisis appropriate

Userl OoUi (Ob)
Returns the Userlnstance associated with an object.

| CoMdbil e(ob o)
Returns the object’ s mobility flag.

[1 1] oPos(ob Ob)
Returns the object’ s known position.

[I 1] ObAng(ob)
Returns the object’ s known orientation.

S OGbNane(ob Ob)
Returns the name of the object.

fun [Ob] | OCbCbDestroy(Qb,cb fun [Ob] 1)
Defines a callback to be called before destroying the object.

[rl1l] oList
Returns the list of objects.

fun [Cb S§] | ObCbSpeak call back fun [Cb S| |
Redefines the function called on the server on receipt of a chat message.

[S rl1] Obgetglobalress (ress S)
Returns the value of a C3d resource variable.

I fun bSetd ass user User class S

If the user is not already in the 3D cell, indicates the class of the UserInstance that will need to be created
when the user appears.

If the user isaready in the 3D cell, changes the class of the associated UserInstance.

| ObUpdat ed ass user User class S
If the user isaready in the 3D cell, changes the class of the associated UserInstance.

171

b ObAddl nstance class S param [[S r1] r1]
Creates anew virtual User and a new instance. Among the various parameters, you will use 'name' to
determine the name of the instance and 'anchor’ for the anchor.

| ObRenmpvel nstance id |
Destroys an instance according to the User’s D number.

It can be useful if aplug-in (server side), having received a given action, decidesto “ enter ” aUser in the

3D spacein agiven position (defined by aname in the C3d3 module editor). Two scenarios are possible:
- theUserisaready inthe 3D cell: you just need to move the user to his new position
- theUser isnot already in the 3d cell: you need to bring him there

A new function is defined for this:

I ObPl aceAvat ar user User position S

Y ou pass the User as a parameter as well as the name of the position.

The return value is not important.

b. ontheclient

- the Userlnstance (and therefore the class, the parameters, callbacks for communication with the
module UserClass and the server Userlnstance)

- thename

- a mobility flag: does the object’ s position need to be refreshed and synchronized?

- anavatar flag: does the object appear in the list of avatars present in the scene?

- ananchor

- various callbacks

- amain 3D object, optional

Userl Ui (ob Ob)
Returns the UserInstance associated with an object.

S bNarre(ob b)
Returns the name of the object.

| ObAvatar(ob o)
Returns the object’ s avatar flag.

| CoMbbil e(ob o)
Returns the object’s mobility flag.

[Anchor r1] ObAnchor(ob Ob)
Returns the anchor associated with an object.

H3d bSet Main ob (b objet3d H3d
172

Defines the main 3D object.

H3d (bGet Mai n(ob Ob)
Returns the main 3D object.

I obSelectO(id I)

| oSelectl(id I)

| ObSel ect2(id)

I ObSelect3(id I)

These functions trigger a'selectn’ client event, with the ID number as a parameter (itoa format)

| bSendLocal fromGb to Gb action S paramS rep S
Sends a message to alocal instance.

| ObHear string S
Outputs a message through the "hear” event.

I CbSet Cam ob o
Defines the object to which the camerais linked: this function links the camera to the main 3D object.

Surface oBuffer
Returns the rendering buffer.

I ObSet Background col |
Defines the rendering's 24-bit background color (nil: none).

[Gb r1] fun ObList
Returns the list of objects.

The following functions are used to define callbacks: you must not modify the Ob structure yourself.
fun GbChGet Nane(o,f) : fun[Ob] S

function returning the name of the object

fun bCbhCGetVal (o,f) : fun[Cb §] S

function returning a particular value

fun GbChSet pos(o,f) : fun[C [I I][0I 1 1]] 1

function positioning the object in a particular position

fun GOCbAni mo,f) : fun[Q] |

function called before each rendering

fun ChSend(o,f) : fun[Cb S S §]

function called when a message is received

fun Chdick(o,f) : fun[Cbo H3d Hwat3d I] |

function called when the user clicks on the main object or one of its descendants (handler, material and
button)

fun CbDclick(o,f) : fun[Cb H3d Hwvat3d I] |

173

function called when the user double clicks on the main object or one of its descendants (handler, material
and button)

fun ObCbMove(o,f) : fun[Ob H3d HMat3d] |

function called when the user passes the mouse on the main object or one of its descendants (handler,

material)

fun GbCbDrawm(o,f) : fun[Qb Obj Surface | | 1] |1
function tracing the object in 2D on a bitmap, on a given position and size
fun CbControl (o,f) : fun[Q [[I I] [1 1]]] |

function requesting the moving of the object by passing the 2 speed vectors

fun CbControl dick(o,f) : fun[Cb [H3d Hwat3d |]] |

function called each time the user clicksin the 3D

fun GbChControl Move(o,f) : fun[Cb [Cb H3d Hvat3d]] |

function called each time the user passes the mouse on amain 3D object. The callback returns two
Ob objects: the object that defined the callback, then the object indicated by the mouse.

fun GbChControl KeyDown(o,f) : fun[Cb [I 1]] |

function called each time the user presses akey in the 3D

fun CbChControl KeyUp(o,f) : fun[Cb I] |

function called each time the user releases akey in the 3D

fun bChSpeak(o,f) : fun[Cb S] |

function called when the user says something

fun bChPost Render (o,f) : fun[Cb [ObjBitmap [I 1]]] |

function called after each rendering. The bitmap’s value is ObBuffer()

fun ObCbReceiveLocal (0,f) : fun[Cb Gb S S §] |

function called when there islocal communication between instances (ObSendL ocal function)
the callback’ s parameters are: from, to, action, param, rep

fun GbChDestroy(o,f) : fun[Ob] |

function called before the destruction of the object

The following functions return the value of the callbacks.

fun bGet Nane(o) : fun[Qb] S

fun GbGetVal (0) : fun[Cb §] S

fun GbSetpos(o) : fun[G [I I][I 1 1]] 1

fun GbAnin(o) : fun[Qb] |

fun bSend(o) : fun[b S S 9

fun A ick(o) : fun[Cb H3d Hwvat3d I] |

fun Dclick(o) : fun[OCb H3d Hwat3d I] |

fun GbMove(o) : fun[b H3d Hwat 3d] |

fun GoDraw(o) : fun[Cb ojBitmap | | 1] |

fun Control (o) : fun[Go [[I 1T 11T [I 1 1111 |
fun Controldick(o) : fun[Cb [H3d Hwvat3d I]] |
fun GbControl Move(o) : fun[Cb [Cb H3d Hwvat 3d]] |
fun GbControl KeyDown(o) : fun[Co [I I]] |

fun CbControl KeyUp(o) : fun[Cb I] |

174

fun bSpeak(o) : fun[Cb §] |

fun CbPost Render (o) : fun[Cb [ObjBitmap [I 1]]] |
fun ObReceiveLocal (0) : fun [Cb b S S §] |

fun CbDestroy(o) : fun[Qb] |

fun Cbgetgl obal ress(ress S) [S r1]
returns the value of aresource variable of the C3d.

Y ou can define clickable objects (i.e., parts of the 3D scene on which the mouse's cursor will be changed
and with which move, click double-click callbacks are associated):

| oSetlLinks [ob b liste liens [[H3d Hmt3d S Ohj Cursor fun [Gb H3d
Hrat3d I] | fun [H3d Hrat3d I] | fun [Cb H3d Hmt3d] 1] r1]
Each link is atuple containing:
- thelink’s 3d handler
- possibly the link’s material handler (if nil, the whole object is alink, independently of the
material)
- thelink’s apparent name
- themouse cursor to be used (two constants: HandCursor (a hand) and StdCursor (the simple
arrow) can be used)
- click callback (arguments: instance, 3d handler, material handler, buttons status)
- double-click callback (arguments: instance, 3d handler, material handler, buttons status)
- move calback (arguments:. instance, 3d handler, material handler)

fun obGetLinks ob (b
returns the previous list

There are some global variables:
session : S3d
3d session

shell : H3d
the scene’' s main node

cam : H3d
camera

nane3d : S
name of the cell

When an object is created on the client, there are two possible scenarios:

a. the object corresponds to an avatar

175

If it isan avatar other than that of the machine’ s user:
The clickStd callback is automatically defined:
ObSelectl called on the left button, ObSelect2 on the right button.

The setPosStd position definition callback is automatically defined. It assumes that the avatar has the
following structure:

- ashell node representing the avatar’ s position (usually located on alevel with the camera)

- achild 3D object oscillating around this position

If it isthe avatar of the machine' s user:

The control Std callback is automatically defined:

management of movement with collisions

The setPosStd position definition callback is automatically defined. These two functions assume that the

avatar has the following structure:

- ashell node placed at the bottom, which turns along the vertical axis

- acaollision sphere of one meter’ s radius located 1m10 from the bottom

- ashdl node to which the camera will be assigned, located 1m60 from the feet, and which turns along
the horizontal axis

The speakStd callback is automatically defined

In addition, if the avatar’s classis not present, the 'default’ classis used: the aim isto make the avatar
appear as early as possible in the scene, even if it is not in its definitive form.

This default avatar (panel with Scol logo floating in the air) defines the following callbacks:

- animation callback CbAnim

- destruction callback CbDestroy

When the class is present, the default avatar will be destroyed and replaced by the normal avatar.
As a conseguence, you can overload the default avatar by adding a plug-in.

b. the object corresponds to a functionality
there are no predefined callbacks

2. Anchors

When developing 3D functionalities, you will quickly notice that there are two types of function:
- Those that are linked specifically to an object, and that will use the 'main object ' field, such as
avatars for example.

176

- Those that require more elements: several 3D objectgymaterialg/positions, such as, for example, a
module making several 3D objects follow several trgjectories synchronously.

The second type does away with the concept of a main object, which is replaced by that of an anchor. An
anchor is an (ordered) list of objects, materials and positions. It is basically a list of Anchor-type
elements.

t ypedef Anchor=
objAnchor [H3d HMat3d S 1]
| posAnchor [STITI][111];;

Thislist is made up of two types of element:
- objAnchor: atuple (3D object, material, name, visibility flag)
- posAnchor: atuple (name of the position, vector, angles)

Thus the anchor is literally the point at which functionality is attached to the 3D scene. For example, a
rotation module needs a set of objects to rotate, a movement module needs objects and tragjectories, a
blinking module needs a list of materials, etc. Some functionalities do not need an anchor: for example, a
module displaying a superimposed logo in a corner of the 3D image.

The "anchor" parameter of an instance contains the name of the anchor associated with the instance.

This can be the name of an anchor defined in the module’s editor, or adirect definition such as: strbuild
("#"::nom_H3d::nom_HMat3d::nil)::nil

In thislatter case, the anchor isalist of asingle element.

3. Plug-ins

1. General points

The Ob structure represents an object, in other words the instance of a particular class. The role of plug-
insisto describe classes. There will be precisely one class defined for each plug-in. A plug-in that does
not define aclassis of no interest.

The plug-inis described by a *.plug file, very similar to the *.dmc format. The same fields can be found:
- name: name of the plug-in

- help: help text file

- serverNeeded: filesrequired by the server plug-in

- serverLoad: list of filesto be successively complied to start the server

- clientNeeded: files required by the client plug-in

- clientLoad: list of filesto be successively complied to start the client

- editorNeeded: files required by the editor plug-in

- editorLoad: list of filesto be successively complied to start the editor

- version version_number subversion_number

177

Unlike dmc files, here the server* lines are optional, as are the client* lines. But a plug-in with neither a
server* ling, nor aclient* line would be of no interest.

2. Interna plug-in

The C3d editor determines the plug-ins required by the instances defined in the editor. When the C3d
module is started, the plug-ins required are loaded. N.B.: in order to be recognized by the C3d editor, the
directory containing the *.plug file must be in the Dms/3d/Plugins directory.

Once the plug-in has been loaded, the IniPlug function is started (the equivalent of the IniDmi function
for dmi modules), with the name of the *.plug file as an argument: this fileisimmediately usable, since
its downloading is a prerequisite to the starting of the plug-in.

Typically the plug-in calls the following function:

I PlugRegister(class S new fun [Ob] | close fun[] |

This function saves the class, with the function called when an object is created, and the function called
before the C3d module is destroyed.

This function is the same on the server and on the client.

N.B.: if instances of the class already exist in the module, the ‘new’ function will be called before the
PlugRegister function finishes.

The plug-in has access to a particular API.

It has access to the global variable 'thisplug’, which is a Plug-type pointer that pointsto itself (in the same
way that a module has access to the variable 'this, which is a DMI-type pointer that points to itself).

[[S r1] r1] PLUGparam plugin Plug
Returns the plug-in’s parameters (types of class variables).

[Plug r1] PLUGQ i st
Returns the plug-in list.

S PLUGile plugin Plug
Returns the name of the .plug file.

S PLUGcl ass plugin Plug
Returns the class of the plug-in.

Plugin information flags: a plug-in may, on the client side, give some information about itself. This
generally occurs, once and for all, with the IniPlug. These flags are made up of the following masks:
PLUGIN_ONLINE_EDITING theplug-inisintended to be edited online
PLUGIN_WHOLE_OBJECT the plug-in uses an anchor containing a 3D object, with no specified
material

178

The functions for using the information flag are:
| PLUG nfo plugin Plug

Returns the current value.

| PLUGsetinfo plugin Plug

Defines anew value.

| PLUGdefi neEditor plugin Plug callback fun [ObjWn H3d Hvat3d S
Defines the editor creation callback.

fun [] S fun PLUGstartEditor plugin Plug w ndow ObjWn 3dhandler H3d
mat eri al Hvat 3d paraneters S
Starts the editor associated with aplug-in with initial parameters.

In the editor, the IniPlug fileis also called, with the name of the *.plug file as a parameter. The plug-in
then typicaly calls the following function:

I PlugRegister class S save fun [[Inst r1]] [[S r1] [S r1] [[S
ri]rl1l] [[S r1]r1]] close fun[] | openedit fun[CbjWn S] | closeedit
fun[] S

This save function is called just before the file is saved. Oninput, it recoversthe list of instances defined
in the editor, whose class corresponds. This function is not called if thislist is empty.

The Inst structure is defined in the following way:

struct Inst=[namel nst: S,classlnst: S,anchorinst: S,parami nst: SJmkinst;;

The save function must return a tuple of two lists of words, and two lists of word lists, which makes a
tuple of four elements:

- thefirst element isalist of filesto be added to the 'registerF line in the dmi block

- thesecond element isalist of filesto be added to the 'register' line in the dmi block

- thethird elementisalist of linesto be added to the end of the dat block (strextr format)

- thefourth element isalist of lines to be added to the end of the dmi block (strextr format)

N.B.: the *.plug and clientNeeded files are automatically saved as downloadable files: there isno point in
returning them in the save function.

Generaly, you will just need to add the line 'plugin file_*.plug’ to the dat block.

Y ou will be able to add dmi new elements, new actions and new zones to the dmi file.

If the save function is not defined (nil in the PlugRegister function) a standard save function will be
called, which returns the following tuple:
[
nil /* registerF */
nil /* register */
("plugin”::plugin_file:nil)::nil /* supplemental Dat */
nil /* supplemental Dmi */

179

Most of the time this suffices.

4. Examples

1. Example 1: rotate module

In this example, the “long” version of the editor is given, a version equivalent to if there
was no definition of the ‘save’ function.

file Dms/3d/Plugins/Rot/rot.plug

nanme Rotate

hel p Drs/ 3d/ Pl ugi ns/ Rot/rot. hel p
clientNeeded ./rotc. pkg
clientLoad ./rotc. pkg
editorNeeded ./rotedit. pkg
editorLoad ./rotedit.pkg

version 2 0

file Dms/3d/Plugins/Rot/rotc.pkg

/* Rotate Plugin - DM5 - March 00 - by Sylvain HUET */
typeof cl ass=S;;

fun rotobj2(x,v)=
match x with
(obj Anchor [h _ _] -> MBrotateObj session h v)

| (_->nil);;
fun rotobj(o,v)=apply_on_list ObAnchor o @otobj2 v;;

fun newtb(o0)=

I et hd Uget Param GbU o "angular" -> s in

let nth char s 0 -> a in

let if (a>=48 && a<bh8)||a=='- then ['y 109*atoi s]
el se [a 109*atoi substr s 1 1000] ->[v i] in

let if v=="x then [0 i O]

180

else if v=="z then [0 O i]
else [i 00] ->vin
CbCbAni m o nkfun2 @ ot obj v;
0;;

fun I'ni Plug(file)=

set class=getlnfo strextr _getpack _checkpack file
Pl ugRegi ster class @ewdb nil;
0;;

nanme” ;

file Dms/3d/Plugins/Rot/rotedit.pkg

/* rotedit.pkg : editeur du plugin rot */
typeof plugin=S;;
proto save=fun [[Inst r1]] [[Sr1] [Srl] [[Srl]rl] [[Sr1]r1]];;

fun save(l)=

[

nil /* registerF */

nil /* register */

("plugin"::plugin::nil)::nil /* supplenmental Dat */
nil /* supplemental Dmi */

15

fun IniPlug(file)=
set plugin=file,;
Pl ugRegi ster (getlinfo strextr _getpack _checkpack file "nane")
class nil nil nil nil;;

2. Example 2: test module

The test module demonstrates the server plug-in and the possibilities for communication
between server object and client object. The principle is the following: by clicking on an
object (first element of the instance’s anchor), the user randomly changes the object’s
flat color. This change is global: it applies to everyone. It is also persistent: the server
permanently keeps the current color, and transmits it to new clients.

181

The message system is the following:

- the server transmits the color with the *setFlat® message

- the client requests the current color with the "color?" message

- the client indicates that it is clicking on the object with the *click® message

The communication functions used are those of UserlInstances, used as superclasses of
the Ob structure.

file Dms/3d/Plugins/Test/test.plug

name Test

hel p Dms/ 3d/ Pl ugi ns/ Test/test. hel p
server Needed ./tests. pkg
serverLoad ./tests. pkg
clientNeeded ./testc. pkg
clientLoad ./testc. pkg

editor Needed ./testedit. pkg
editorLoad ./testedit. pkg

version 2 0

file Dms/3d/Plugins/Test/tests.pkg
/* Rotate Plugin - DM5 - March 99 - by Sylvain HUET */

typeof cl ass=S;;

fun cbcomm(ui,cli,action, param z)=

let z->[o col] in

if I'strcnp action "click” then

(set col =(rand&255) +((rand&255) <<8) +((r and&255) <<16) ;
nutate z<-[_ col];
UsendCli this nil ui "setFlat" itoa col)

else if Istrcnp action "color?" then
Usendd i this cli ui "setFlat" itoa col

else nil;;

fun newb(o0)=
UcbComm this GbU o nkfun5 @bcomm|[o 1];
0;;

fun I'ni Plug(file)=

set class=getlnfo strextr _getpack _checkpack file
Pl ugRegi ster class @ewdb nil;
0;;

nanme” ;

182

file Dms/3d/Plugins/Test/testc.pkg
/* Rotate Plugin - DM5 - March 99 - by Sylvain HUET */

typeof cl ass=S;;

fun appFl at (x, col) =

match x with

(obj Anchor [_ m _] -> M3setMaterial Flat session mcol)
[(_->nil);;

fun appl yFlat (o, col)=
apply_on_list QbAnchor o @ppFl at col;

fun cbconm(ui, acti on, param o) =
if Istrcnp action "setFlat" then
appl yFl at o atoi param
el se nil;;

fun cbclick(o,h,mi)= UsendSrv this CbU o "click" nil;;

fun newb(o0)=
UcbComm this GbU o nkfun4 @bconm o;
mat ch hd GbAnchor o with
(obj Anchor [h _ _] -> bSetMain o h)
[(_->nil);
bChd ick o @bclick;
UsendSrv this GbU o "color?" nil;
0;;

fun Ini Plug(file)=

set class=getlnfo strextr _getpack _checkpack file "nane";
Pl ugRegi ster class @ewdb nil;
0;;

file Dms/3d/Plugins/Test/testedit.pkg
/* edit.pkg : editeur du plugin */

fun I'ni Plug(file)=
Pl ugRegi ster (getinfo strextr _getpack _checkpack file "name")
class nil nil nil nil;;

183

_masterchannél...........ccocoooivinnieenc 115

3D....2, 4,76, 77,78, 80, 83, 84, 85, 86, 93, 95,
126, 128, 131, 132, 134, 135, 169, 176, 177
3D OLJECES .. 76, 77
ACHIVEX .o 4,139, 151
BIgNUM.....c.ooiiiciceeece e 97, 99
O o FO RO 169
callback17, 72, 142, 147, 153, 155, 162, 163
CAMENESevveeeveeeeeciieeeeeree e saeee e 76, 77, 80, 82

channdl18, 22, 51, 53, 54, 55, 56, 57, 59, 60,
61, 62, 70, 71, 73, 74, 75, 111, 113, 115, 116,
123, 124, 134, 135

collision............... 76, 79, 80, 93, 94, 95, 96, 176
communication constructor 25, 27, 60, 169
condition 30, 36, 99, 128, 130, 138, 139
console.....13, 14, 19, 43, 50, 51, 103, 111, 112,
127
(0000 (1= J 67, 69
dmc134, 137, 159, 162, 163, 164, 165, 166, 168
AMi e, 137, 138, 139, 147, 154, 155
DMS......126, 127, 133, 134, 164, 165, 166, 167
documents.........cooeeueeenne 128, 129, 132, 139, 147
editor 11, 80, 127, 132, 134, 135, 137, 157, 158,
163, 165

environment 4, 9, 10, 18, 22, 53, 54, 55, 56, 58,
59, 62, 113, 116

events....59, 71, 72, 94, 129, 138, 142, 152, 163

files...4, 9, 10, 11, 13, 40, 53, 54, 58, 65, 66, 67,
68, 69, 71, 75, 76, 78, 80, 82, 84, 85, 97, 112,
113, 116, 117, 132, 133, 134, 135, 137, 138,
148, 157, 162

Hello World....12, 13, 14, 15, 16, 17, 21, 53, 71,
73

inference of type.......ccccvevverenecneneen 14,21

M3D e 80, 84, 85, 86, 87

material77, 78, 79, 82, 83, 86, 90, 91, 92, 93,
177

memory ..9, 45, 61, 78, 79, 85, 86, 88, 111, 112,
114, 133, 134, 135, 137, 147

modules..77, 126, 127, 128, 129, 130, 131, 132,
134, 135, 137, 138, 139, 141, 142, 152

Multimedia........ocevveevererreeeeeee 109, 126

operating rightSccoccvveeeveerecce e, 113

184

PArENthESES ..o 13, 19, 63
Patition.......cccceveierireieene 10, 12, 65, 66, 133
PIUG-IN e 101, 151
POlymMOrphicccovveveeereeeee 3,21, 35,41
POlYmMOrphiSM......ccccvvirenircncnes 21,23,24
proprietary channelcccooevieivecicecs 71
QUICKSOI ..o 34
FECUrSIONcoevveeeieecreeeciee e 22, 23, 24, 34, 140
redefinitionccoeevvee e, 40
FEFIEX o 72, 73,74, 75
SCENE e 76, 79
script...... 13, 53, 54, 55, 56, 58, 59, 62, 66, 111,
112, 113, 114, 116, 117, 119, 122, 123, 127,
134, 135
S oS TSRO 139

server . 22, 54, 56, 57, 59, 61, 67, 111, 116, 117,
127,128, 129, 130, 131, 132, 133, 134, 135,
137, 138, 139, 140, 141, 142, 151, 153, 158,
162, 164, 166, 169

session77, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91,

92, 93, 95
Side effeCtS....ccceeiciiceec e 19,24
SIGNAUre ... 46, 67, 68, 69, 133
SIONING vt 43
SOL e 101, 102, 103, 104
standard client.........ccoeeeeevevieenennns 67, 116, 117
standard SErVESoceveevveeeeeeceeeeeee 116, 117
SEAMTUP .. 133

start-up... 13, 19, 58, 65, 66, 111, 112, 113, 114,
116, 135

SIFUCKUNES.......eveee e 37, 140, 151

syntax... 3, 10, 11, 13, 21, 24, 53, 55, 58, 62, 82,
112

tabIES. ..o 24, 36, 43, 48
TCP/IP..ovne 53, 54, 56, 61, 62, 111, 139
1] 1115 6T 71,75
tUPIES e 22,24, 32,33,34,40
type CONSIIUCLONS........cooeiieeieiiciece e 37,38

types... 13, 21, 22, 23, 24, 25, 37, 40, 53, 58, 66,
73, 79, 81, 86, 94, 101, 128, 130, 132, 133,
176, 177

6])= 53, 55, 61, 62

variable.9, 17, 18, 22, 24, 25, 27, 29, 32, 37, 38, 169
40, 41, 80, 85, 86, 116, 117, 128, 143, 163, virtual machine.........cccccoevvveenenee. 9, 10, 14,112

185

