Project

General

Profile

BitmapToolkit Scol plugin
MLtoolkit

Functions

int _CRml (mmachine m)
 Create a new neural network Prototype: fun [Chn I F] ObjMl.
 
int _DSml (mmachine m)
 destroy a neural network Prototype: fun [ObjMl] I
 
int _MlAddDetectionData (mmachine m)
 Get a label for the input Prototype: fun [ObjMl [[F F F] r1]] I.
 
int _MlAddTrainingData (mmachine m)
 Add data to learn to the format <input, label> Prototype: fun [ObjMl [[F F F] r1] S] I.
 
int _MlTrain (mmachine m)
 Launch the training of the nn Prototype: fun [ObjMl] I.
 
int _MlSaveData (mmachine m)
 Save the settings of a trained neural network Prototype: fun [ObjMl W] I.
 
int _MlLoadData (mmachine m)
 Load an already trained file neural network AND the used parameters (high level) Prototype: fun [ObjMl P] I.
 
int _MlGetCategories (mmachine m)
 Get the ML loaded categories Prototype: fun [ObjMl] [S r1].
 
int _CBMlTrainingFinished (mmachine m)
 Set a CB function linked to the finished training signal Prototype: fun [ObjMl fun [ObjMl u0] u1 u0] ObjMl.
 
int _CBMlDetect (mmachine m)
 Set a CB function linked to detection signal Prototype: fun [ObjMl fun [ObjMl u0 S] u1 u0] ObjMl.
 

Detailed Description

Scol functions for Neural network

Function Documentation

◆ _CBMlDetect()

int _CBMlDetect ( mmachine  m)

Set a CB function linked to detection signal Prototype: fun [ObjMl fun [ObjMl u0 S] u1 u0] ObjMl.

Returns
I : return the same ObjMl

Definition at line 425 of file MlToolkit.cpp.

◆ _CBMlTrainingFinished()

int _CBMlTrainingFinished ( mmachine  m)

Set a CB function linked to the finished training signal Prototype: fun [ObjMl fun [ObjMl u0] u1 u0] ObjMl.

Returns
I : return the same ObjMl

Definition at line 404 of file MlToolkit.cpp.

◆ _CRml()

int _CRml ( mmachine  m)

Create a new neural network Prototype: fun [Chn I F] ObjMl.

Parameters
ChnScol channel
I: Mode, 0 for pose detection, 1 for motion detection
I: Input number
F: sensibility
Returns
I : return new ObjMl on success or NIL otherwise

Definition at line 63 of file MlToolkit.cpp.

◆ _DSml()

int _DSml ( mmachine  m)

destroy a neural network Prototype: fun [ObjMl] I

Parameters
ObjMl: the ML object
Returns
I : return 0 if success or NIL otherwise

Definition at line 117 of file MlToolkit.cpp.

◆ _MlAddDetectionData()

int _MlAddDetectionData ( mmachine  m)

Get a label for the input Prototype: fun [ObjMl [[F F F] r1]] I.

Parameters
ObjMl: the ML object
[[FF F] r1] : list of tuple data
Returns
I : return 0 if success or NIL otherwise

Definition at line 148 of file MlToolkit.cpp.

◆ _MlAddTrainingData()

int _MlAddTrainingData ( mmachine  m)

Add data to learn to the format <input, label> Prototype: fun [ObjMl [[F F F] r1] S] I.

Parameters
ObjMl: the ML object
[[FF F] r1] : list of tuple data
S: the category name for the data
Returns
I : return 0 if success or NIL otherwise

Definition at line 197 of file MlToolkit.cpp.

◆ _MlGetCategories()

int _MlGetCategories ( mmachine  m)

Get the ML loaded categories Prototype: fun [ObjMl] [S r1].

Parameters
ObjMl: the ML object
Returns
I : return 0 if success or NIL otherwise

Definition at line 353 of file MlToolkit.cpp.

◆ _MlLoadData()

int _MlLoadData ( mmachine  m)

Load an already trained file neural network AND the used parameters (high level) Prototype: fun [ObjMl P] I.

Parameters
ObjMl: the ML object
P: the ML data file
Returns
I : return 0 if success or NIL otherwise

Definition at line 320 of file MlToolkit.cpp.

◆ _MlSaveData()

int _MlSaveData ( mmachine  m)

Save the settings of a trained neural network Prototype: fun [ObjMl W] I.

Parameters
ObjMl: the ML object
W: file to write
Returns
I : return 0 if success or NIL otherwise

Definition at line 278 of file MlToolkit.cpp.

◆ _MlTrain()

int _MlTrain ( mmachine  m)

Launch the training of the nn Prototype: fun [ObjMl] I.

Parameters
ObjMl: the ML object
Returns
I : return 0 if success or NIL otherwise

Definition at line 247 of file MlToolkit.cpp.