Scol standard library package
0.3.1
Common and usefull functions for all Scol applications
|
Classes | |
struct | Complex |
Internal structure. You should not call it directly, use API instead ! More... |
Functions | |
std_cAdd (c1, c2) | |
Add two complex numbers. | |
std_cAddNew (c1, c2) | |
Add two complex numbers. The return is a new complex number. | |
std_cArg (c, flag) | |
Get the argument of a complex number. | |
std_cCmp (c1, c2) | |
Compare two complex numbers. | |
std_cConjugate (c) | |
Create the conjugate of a complex number. | |
std_cDiv (c1, c2) | |
Divide two complex numbers. | |
std_cDivNew (c1, c2) | |
Divide two complex numbers. The return is a new complex number. | |
std_cEuler (f) | |
Exponentiation by the Euler's formula : e power fi where i is the imaginary unit (i² = -1) and f is a real number (here, f is a floatting point number). | |
std_cFromS (szC) | |
Create a new Complex from a literal string (such as "a + bi") | |
std_cGet (c) | |
Get a complex number. | |
std_cGetImg (c) | |
Get the imaginary part of a complex number. | |
std_cGetReal (c) | |
Get the real part of a complex number. | |
std_cInv (c) | |
Returns the inverse of a complex number. | |
std_cInvNew (c) | |
Returns the inverse of a complex number. This is a new complex number. | |
std_cIsZero (c) | |
Check if a complex number is 0. | |
std_cLog (c) | |
The natural logarithm (base 'e') of a complex number. | |
std_cLogNew (c) | |
Returns the first solution of the natural logarithm (base 'e') of a complex number. The return is a new complex number. | |
std_cMod (c) | |
Get the modulus (phasis) of a complex number. | |
std_cMul (c1, c2) | |
Multiply two complex numbers. | |
std_cMulNew (c1, c2) | |
Multiply two complex numbers. The return is a new complex number. | |
std_cNew (fReal, fImg) | |
Create a new Complex. | |
std_cPow (c, i) | |
The power of a complex number by an integer. | |
std_cPowNew (c, i) | |
The power of a complex number by an integer The return is a new complex number. | |
std_cRootn (c, i) | |
Returns the first solution of the n-th root of a complex number. | |
std_cRootnAll (c, i) | |
Returns all n-th roots of a complex number. | |
std_cRootnK (c, i, k) | |
Returns a particular soultion of the n-th root of a complex number. | |
std_cRootnNew (c, i) | |
Returns the first solution of the n-th root of a complex number. The return is a new complex number. | |
std_cSet (c, fReal, fImg) | |
Set a complex number. | |
std_cSetImg (c, fImg) | |
Set the imaginary part of a complex number. | |
std_cSetReal (c, fReal) | |
Set the real part of a complex number. | |
std_cSqr (c) | |
The square of a complex number. | |
std_cSqrNew (c) | |
Square of a complex number. The return is a new complex number. | |
std_cSqrt (c) | |
Square root of a complex number. | |
std_cSqrtNew (c) | |
Square root of a complex number. The return is two new complex numbers. | |
std_cSub (c1, c2) | |
Substract two complex numbers. | |
std_cSubNew (c1, c2) | |
Substract two complex numbers. The return is a new complex number. | |
std_cToS (c) | |
Get a complex number to a literal string (like "a+bi") | |
std_cZero () | |
Create a new zero (0) Complex (0+0i) |
Detailed Description
Package to load : lib/std/complex.pkg
Dependancies :
- none
Function Documentation
std_cNew | ( | fReal | , |
fImg | |||
) |
std_cFromS | ( | szC | ) |
std_cZero | ( | ) |
std_cIsZero | ( | c | ) |
std_cSetReal | ( | c | , |
fReal | |||
) |
std_cSetImg | ( | c | , |
fImg | |||
) |
std_cSet | ( | c | , |
fReal | , | ||
fImg | |||
) |
std_cGetReal | ( | c | ) |
std_cGetImg | ( | c | ) |
std_cGet | ( | c | ) |
std_cToS | ( | c | ) |
std_cConjugate | ( | c | ) |
std_cMod | ( | c | ) |
std_cArg | ( | c | , |
flag | |||
) |
Get the argument of a complex number.
The argument (or phasis) of (a+bi) is arctangent of b and a.
Prototype: fun [Complex I] F
- Parameters
-
Complex : a complex number. I : a flag. In the case where a and b are equals at 0 (zero), this function returns 0 if this flag is 0 or nil if this flag has another value. Indeed, in mathematics, this value is undefined but the many language, like C, returns 0 instead of a 'NaN' (Not a Number).
- Returns
- F : its argument, in radians (see above)
std_cAdd | ( | c1 | , |
c2 | |||
) |
Add two complex numbers.
Prototype: fun [Complex Complex] [F F]
- Returns
- [F F] : the result (real part and imaginary part)
- See Also
- std_cAddNew
std_cAddNew | ( | c1 | , |
c2 | |||
) |
std_cSub | ( | c1 | , |
c2 | |||
) |
Substract two complex numbers.
Prototype: fun [Complex Complex] [F F]
- Returns
- [F F] : the result (real part and imaginary part)
- See Also
- std_cSubNew
std_cSubNew | ( | c1 | , |
c2 | |||
) |
std_cMul | ( | c1 | , |
c2 | |||
) |
Multiply two complex numbers.
Prototype: fun [Complex Complex] [F F]
- Returns
- [F F] : the result (real part and imaginary part)
- See Also
- std_cMulNew
std_cMulNew | ( | c1 | , |
c2 | |||
) |
std_cDiv | ( | c1 | , |
c2 | |||
) |
Divide two complex numbers.
Prototype: fun [Complex Complex] [F F]
- Returns
- [F F] : the result (real part and imaginary part)
- See Also
- std_cDivNew
std_cDivNew | ( | c1 | , |
c2 | |||
) |
std_cInv | ( | c | ) |
Returns the inverse of a complex number.
Prototype: fun [Complex] [F F]
- Parameters
-
Complex : a complex number.
- Returns
- [F F] : the result (real part and imaginary part), nil if error
- See Also
- std_cInvNew
- std_cPow (n = -1)
std_cInvNew | ( | c | ) |
std_cSqr | ( | c | ) |
The square of a complex number.
Prototype: fun [Complex] [F F]
- Parameters
-
Complex : a complex number.
- Returns
- [F F] : the result (real part and imaginary part)
- See Also
- std_cSqrNew
std_cSqrNew | ( | c | ) |
std_cSqrt | ( | c | ) |
Square root of a complex number.
Prototype: fun [Complex] [[F F] [F F]]
- Parameters
-
Complex : a complex number.
- Returns
- [[F F] [F F]] : the result (two complex numbers with their real part and imaginary part)
- See Also
- std_cSqrtNew
std_cSqrtNew | ( | c | ) |
std_cPow | ( | c | , |
i | |||
) |
The power of a complex number by an integer.
Prototype: fun [Complex I] [F F]
- Parameters
-
Complex : a complex number. I : an integer
- Returns
- [F F] : the result (real part and imaginary part)
- See Also
- std_cPowNew
std_cPowNew | ( | c | , |
i | |||
) |
std_cRootn | ( | c | , |
i | |||
) |
Returns the first solution of the n-th root of a complex number.
Prototype: fun [Complex I] [F F]
- Parameters
-
Complex : a complex number. I : an integer
- Returns
- [F F] : the simplier result (real part and imaginary part)
- Remarks
- In fact, the n-th root of a complex number is 'multi valued'.
- See Also
- std_cRootnNew
- std_cRootnK for a particular value
- std_cRootnAll for all values
std_cRootnNew | ( | c | , |
i | |||
) |
Returns the first solution of the n-th root of a complex number. The return is a new complex number.
Prototype: fun [Complex I] Complex
- Parameters
-
Complex : a complex number. I : an integer
- See Also
- std_cRootn
- std_cRootnK
- std_cRootnAll
std_cRootnAll | ( | c | , |
i | |||
) |
Returns all n-th roots of a complex number.
The part real is :
(the n-th root of modulus) * cosine ((the argument + 2*k*Pi) / n)
The imaginary part is :
(the n-th root of modulus) * sine ((the argument + 2*k*Pi) / n)
where 'k' is an integer, with k <= 0 < n.
Prototype: fun [Complex I] [[I F F] r1]
- Parameters
-
Complex : a complex number. I : an integer (the 'n_th')
- Returns
- [[I F F] r1] : a list of all values. The first item of each tuple is the indice 'k'. The size of the list is 'n'.
- See Also
- std_cRootn for 'k' = 0
- std_cRootnNew for 'k' = 0
- std_cRootnK for a given 'k'
std_cRootnK | ( | c | , |
i | , | ||
k | |||
) |
Returns a particular soultion of the n-th root of a complex number.
Prototype: fun [Complex I I] [F F]
- Parameters
-
Complex : a complex number. I : an integer, the 'n'-th root I : k : a particular solution (see std_cRootnAll for more details) k must be positive or nul and strictly lower than n (else, nil is returned)
- Returns
- [F F] : the result (real part and imaginary part)
- See Also
- std_cRootnNew for 'k' = 0
- std_cRootn for 'k' = 0
- std_cRootnAll for all 'k'
std_cLog | ( | c | ) |
The natural logarithm (base 'e') of a complex number.
Prototype: fun [Complex] [F F]
- Parameters
-
Complex : a complex number.
- Returns
- [F F] : the result (real part and imaginary part)
- Remarks
- Cosine and sine being periodic functions, the natural logarithm of a complex number is also periodic. So, only the simple value is returned here, i.E. when 'k' = 0. To obtain all values, it need to apply this formula :
the real part is : log of modulus the imaginary part is : the argument + 2*k*Pi
where 'k' is an integer (in Z set)
If you want a particular result, add '2kPi' to the returned imaginary part.
std_cLogNew | ( | c | ) |
std_cEuler | ( | f | ) |
Exponentiation by the Euler's formula : e power fi where i is the imaginary unit (i² = -1) and f is a real number (here, f is a floatting point number).
e power fi = cos f + i sin f
Prototype: fun [F] [F F]
- Parameters
-
F : a floating point number.
- Returns
- [F F] : the result (real part and imaginary part)
Generated on Sat Jan 31 2015 19:15:45 for Scol standard library package by 1.8.1.2